[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8):809-815. [2] WU G, CHAN K C, ZHU L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys[J]. Nature, 2017, 545(7652):80-83. [3] BOWDEN D, KRYSIAK Y, PALATINUS L, et al. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications[J]. Nature Communications, 2018, 9:1374. [4] 陈联国, 王文盛, 朱知寿, 等. 大规格损伤容限钛合金TC4-DT的研制及应用[J]. 航空学报, 2020, 41(6):523454. CHEN L G, WANG W S, ZHU Z S, et al. Development and application of large-scale damage tolerance titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523454(in Chinese). [5] 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3):422494. HU X A, SHI D Q, YANG X G, et al. TMF constitutive and life modeling:From smooth specimen to turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):422494(in Chinese). [6] 马腾才, 胡希伟,陈银华. 等离子体物理原理[M]. 合肥:中国科学技术大学出版社, 1988:2-10. MA T C, HU X W, CHEN Y H. Physical principles of plasma[M]. Hefei:University of Science and Technology of China Press, 1988:2-10(in Chinese). [7] 刘新. 离子化气流辅助切削机理与应用基础研究[D]. 大连:大连理工大学, 2012:34,115,126. LIU X. Basic research on mechanism and application of ionized gas jet assisted cutting[D]. Dalian:Dalian University of Technology, 2012:34,115,126(in Chinese). [8] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京:科学出版社, 2015:4-5. SHAO T, YAN P. Atmospheric pressure gas discharge and plasma application[M]. Beijing:Science Press, 2015:4-5(in Chinese). [9] 列宾杰尔. 物理化学力学:一门新的科学领域[M].北京:中国工业出版社,1964:10-22 REHBINDER. Physico-chemical mechanics:A new scientific field[M].Beijing:China Industry Press, 1964:10-22(in Chinese). [10] ANDRADE E N D C, RANDALL R F Y. The rehbinder effect[J]. Nature, 1949, 164(4183):1127. [11] 曾好平. 熔射成形骤冷熔滴生长特性基础研究[D]. 大连:大连理工大学, 2007:4-6. ZENG H P. Research on the characteristics of quenching droplet growth in plasma spray forming[D]. Dalian:Dalian University of Technology, 2007:4-6(in Chinese). [12] SAMPATH S, JIANG X. Splat formation and microstructure development during plasma spraying:Deposition temperature effects[J]. Materials Science and Engineering:A, 2001, 304-306:144-150. [13] CHIDAMBARAM SESHADRI R, DWIVEDI G, VISWANATHAN V, et al. Characterizing suspension plasma spray coating formation dynamics through curvature measurements[J]. Journal of Thermal Spray Technology, 2016, 25(8):1666-1683. [14] GILDERSLEEVE E J, SAMPATH S. Process-geometry interplay in the deposition and microstructural evolution of 7YSZ thermal barrier coatings by air plasma spray[J]. Journal of Thermal Spray Technology, 2020, 29(4):560-573. [15] LEE H, HAN S J, SESHADRI R C, et al. Thermoelectric properties of in situ plasma spray synthesized sub-stoichiometry TiO2-x[J]. Scientific Reports, 2016, 6:36581. [16] CHENG K C, CHEN J H, STADLER S, et al. Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process[J]. Applied Surface Science, 2019, 478:478-486. [17] 徐文骥. 等离子熔射成形法制造零件技术的基础研究[D]. 大连:大连理工大学, 2000:50-73. XU W J. Basic study on the technology of plasma-spray forming parts[D]. Dalian:Dalian University of Technology, 2000:50-73(in Chinese). [18] FANG J C, ZENG H P, XU W J, et al. Prediction of in-flight particle behaviors in plasma spraying[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 18(1-2):283. [19] MAHADE S, CURRY N, BJÖRKLUND S, et al. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray[J]. Surface and Coatings Technology, 2017, 318:208-216. [20] 解路, 熊翔, 王跃明, 等. 热等静压对等离子喷涂成形制备钼制品的影响[J]. 中南大学学报(自然科学版), 2011, 42(10):3009-3014. XIE L, XIONG X, WANG Y M, et al. Molybdenum products produced by plasma spray forming and hot-isostatic pressing[J]. Journal of Central South University (Science and Technology), 2011, 42(10):3009-3014(in Chinese). [21] LAHA T, KUCHIBHATLA S, SEAL S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite[J]. Acta Materialia, 2007, 55(3):1059-1066. [22] LAHA T, CHEN Y, LAHIRI D, et al. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(5):589-594. [23] DAVOODI JAMALOEI A, SALIMIJAZI H R, EDRIS H, et al. Study of TLP bonding of Ti-6Al-4V alloy produced by vacuum plasma spray forming and forging[J]. Materials & Design, 2017, 121:355-366. [24] WANG Y M, XIONG X, MIN X B, et al. Near-net-shape 95 W-3.5 Ni-1.5Fe thin-walled products produced by plasma spray forming[J]. Materials Science and Engineering:A, 2010, 527(21-22):5782-5789. [25] PATEL R R, KESHRI A K, DULIKRAVICH G S, et al. An experimental and computational methodology for near net shape fabrication of thin walled ceramic structures by plasma spray forming[J]. Journal of Materials Processing Technology, 2010, 210(10):1260-1269. [26] WANG Y M, XIONG X, ZHAO W Z, et al. Near-net-shape tungsten-rhenium alloy parts produced by plasma spray forming and hot isostatic pressing[J]. Materials Transactions, 2014, 55(4):713-721. [27] WANG Y M, XIONG X, ZHAO Z W, et al. Thermal shock and ablation behavior of tungsten nozzle produced by plasma spray forming and hot isostatic pressing[J]. Journal of Thermal Spray Technology, 2015, 24(6):1026-1037. [28] 徐玄, 顾进跃, 顾伟华, 等. 等离子喷涂成形技术的研究现状和应用进展[J]. 中国钨业, 2015, 30(3):43-51. XU X, GU J Y, GU W H, et al. Research status and application progress of plasma spray forming technology[J]. China Tungsten Industry, 2015, 30(3):43-51(in Chinese). [29] 邓琦林, 徐文骥, 方建成, 等. 基于等离子熔射成形的快速制模实验研究[J]. 模具工业, 2000, 26(5):46-49. DENG Q L, XU W J, FANG J C, et al. Study by experiments on rapid manufacturing moulds based on plasma spraying forming[J]. Die & Mould Industry, 2000, 26(5):46-49(in Chinese). [30] FANG J C, XU W J, ZHAO Z Y, et al. FGM mould with fine veins rapidly manufactured by plasma spraying[J]. Key Engineering Materials, 2005, 291-292:609-614. [31] 张博, 王俊元, 芦琪, 等. 等离子喷焊法制备塑料模具强化层试验研究[J]. 热加工工艺, 2016, 45(14):136-138. ZHANG B, WANG J Y, LU Q, et al. Experimental study on reinforcing layer of plastic mold prepared by plasma spray welding[J]. Hot Working Technology, 2016, 45(14):136-138(in Chinese). [32] SUN S, BRANDT M, DARGUSCH M S. Thermally enhanced machining of hard-to-machine materials-A review[J]. International Journal of Machine Tools and Manufacture, 2010, 50(8):663-680. [33] DOGRA M, SHARMA V S. Techniques to improve the effectiveness in machining of hard to machine materials:A review[J]. International Journal of Research in Mechanical Engineering & Technology, 2013, 3(2):122-126. [34] PARIDA A K, MAITY K. Hot machining of Ti-6Al-4V:FE analysis and experimental validation[J]. Sādhanā, 2019, 44(6):1-6. [35] MOON S H, LEE C M. A study on the machining characteristics using plasma assisted machining of AISI 1045 steel and Inconel 718[J]. International Journal of Mechanical Sciences, 2018, 142-143:595-602. [36] RAO T B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics[J]. Australian Journal of Mechanical Engineering, 2020:1-15. [37] KHANI S, FARAHNAKIAN M, RAZFAR M R. Experimental study on hybrid cryogenic and plasma-enhanced turning of 17-4PH stainless steel[J]. Materials and Manufacturing Processes, 2015, 30(7):868-874. [38] FEYZI T, SAFAVI S M. Improving machinability of Inconel 718 with a new hybrid machining technique[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8):1025-1030. [39] FARAHNAKIAN M, RAZFAR M R. Experimental study on hybrid ultrasonic and plasma aided turning of hardened steel AISI 4140[J]. Materials and Manufacturing Processes, 2014, 29(5):550-556. [40] LESHOCK C E, KIM J N, SHIN Y C. Plasma enhanced machining of Inconel 718:Modeling of workpiece temperature with plasma heating and experimental results[J]. International Journal of Machine Tools and Manufacture, 2001, 41(6):877-897. [41] LEE Y H, LEE C M. A study on optimal machining conditions and energy efficiency in plasma assisted machining of Ti-6Al-4V[J]. Materials, 2019, 12(16):2590. [42] CHEN S H, TSAI K T. The study of plasma-assisted machining to Inconel-718[J]. Advances in Mechanical Engineering, 2017, 9(12):168781401773578. [43] SHAO-HSIEN C, TSAI K T. Predictive analysis for the thermal diffusion of the plasma-assisted machining of superalloy inconel-718 based on exponential smoothing[J]. Advances in Materials Science and Engineering, 2018, 2018:1-9. [44] CHEN X D, QIU H H. Bubble dynamics and heat transfer on a wettability patterned surface[J]. International Journal of Heat and Mass Transfer, 2015, 88:544-551. [45] CHEN R K, LU M C, SRINIVASAN V, et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters, 2009, 9(2):548-553. [46] DENG H, YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing[J]. CIRP Annals, 2013, 62(1):575-578. [47] YAMAMURA K, TAKIGUCHI T, UEDA M, et al. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface[J]. CIRP Annals, 2011, 60(1):571-574. [48] DENG H, MONNA K, TABATA T, et al. Optimization of the plasma oxidation and abrasive polishing processes in plasma-assisted polishing for highly effective planarization of 4H-SiC[J]. CIRP Annals, 2014, 63(1):529-532. [49] DENG H, YAMAMURA K. Smoothing of reaction sintered silicon carbide using plasma assisted polishing[J]. Current Applied Physics, 2012, 12:S24-S28. [50] DENG H, UEDA M, YAMAMURA K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4):1-7. [51] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1):353-356. [52] SUN R Y, YANG X, ARIMA K, et al. High-quality plasma-assisted polishing of aluminum nitride ceramic[J]. CIRP Annals, 2020, 69(1):301-304. [53] DENG H, ENDO K, YAMAMURA K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface[J]. CIRP Annals, 2015, 64(1):531-534. [54] BASTAWROS A F, CHANDRA A, POOSARLA P A. Atmospheric pressure plasma enabled polishing of single crystal sapphire[J]. CIRP Annals, 2015, 64(1):515-518. [55] 刘新, 黄帅, 瞿娇娇, 等. 304不锈钢离子化气流辅助切削试验[J]. 农业机械学报, 2014, 45(5):334-339, 346. LIU X, HUANG S, QU J J, et al. Experiment on ionized gas jet assisted cutting of 304 stainless steel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):334-339, 346(in Chinese). [56] XU W J, LIU X, SONG J L, et al. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet[J]. Applied Surface Science, 2012, 259:616-623. [57] LIU X, ZHANG F, LIU J Y, et al. Atmospheric pressure plasma-assisted precision turning of pure iron material[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5187-5197. [58] 黄帅. 冷等离子体辅助金刚石切削黑色金属基础研究[D]. 大连:大连理工大学, 2017:87-101. HUANG S. Research on diamond cutting of ferrous metals assisted by cold plasma[D]. Dalian:Dalian University of Technology, 2017:87-101(in Chinese). [59] HUANG S, LIU X, CHEN F Z, et al. Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):673-681. [60] XU W J, HUANG S, CHEN F Z, et al. Diamond wear properties in cold plasma jet[J]. Diamond and Related Materials, 2014, 48:96-103. [61] KATAHIRA K, OHMORI H, TAKESUE S, et al. Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide[J]. CIRP Annals, 2015, 64(1):129-132. [62] 刘硕. TC4钛合金大气压冷等离子体射流辅助微铣削研究[D]. 大连:大连理工大学, 2018:32-47. LIU S. Research on atmospheric pressure cold plasma jet assisted micro-milling TC4 titanium alloy[D]. Dalian:Dalian University of Technology, 2018:32-47(in Chinese). [63] MUSTAFA G, LIU J Y, ZHANG F, et al. Atmospheric pressure plasma jet assisted micro-milling of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12):4681-4687. [64] LIU J Y, CHEN Y, ZHANG J C, et al. Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1-2):191-199. |