陈向明1, 姚辽军2, 果立成2, 孙毅2
收稿日期:
2020-09-23
修回日期:
2020-10-14
发布日期:
2020-12-08
通讯作者:
姚辽军
E-mail:L.Yao@hit.edu.cn
基金资助:
CHEN Xiangming1, YAO Liaojun2, GUO Licheng2, SUN Yi2
Received:
2020-09-23
Revised:
2020-10-14
Published:
2020-12-08
Supported by:
摘要: 纤维增强复合材料因其优异的力学性能已被广泛应用于各工业领域,但由于传统制造工艺的限制,复合材料依然无法应用于一些具有复杂构型的结构。近年来,3D打印技术的快速发展有望实现复杂几何形状复合材料结构的有效制造,从而进一步拓展复合材料的应用范围。连续纤维增强复合材料3D打印技术的成熟应用对于中国高端装备的制造具有重要意义。从力学性能角度出发,对3D打印连续纤维增强复合材料的研究现状进行综述分析,重点分析了打印温度、打印层厚度、增强纤维类型、材料堆叠方式、纤维体积含量、打印扫描间距等工艺参数对复合材料力学性能的影响机制;讨论了3D打印复合材料在典型载荷下的力学性能及损伤演化规律,明确了影响/制约其力学性能的主要原因;介绍了3D打印复合材料的强度/刚度分析预测方法,并对研究发展趋势进行了总结和展望。
中图分类号:
陈向明, 姚辽军, 果立成, 孙毅. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10): 524787-524787.
CHEN Xiangming, YAO Liaojun, GUO Licheng, SUN Yi. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524787-524787.
[1] ISO/ASTM. Additive manufacturing-General principles-Terminology:52900-2015[S]. Geneva:ISO, 2015. [2] 魏青松, 史玉升. 增材制造技术原理与应用[M]. 北京:科学出版社, 2017:1-7. WEI Q S, SHI Y S. The theory and application of additive manufacturing[M]. Beijing:Science Press, 2017:1-7(in Chinese). [3] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报, 2019, 55(7):128-134. LIU T F, TIAN X Y, ZHU W J, et al. Mechanism and performance of 3D printing and recycling for continuous carbon fiber reinforced PLA composites[J]. Journal of Mechanical Engineering, 2019, 55(7):128-134(in Chinese). [4] 张肖男, 单忠德, 范聪泽, 等. 增材制造用PLA/连续碳纤复合材料力学性能[J]. 工程塑料应用, 2019, 47(8):91-95. ZHANG X N, SHAN Z D, FAN C Z, et al. Mechanical properties of PLA/continuous carbon fiber composites by additive manufacturing[J]. Engineering Plastics Application, 2019, 47(8):91-95(in Chinese). [5] 耿鹏. 聚醚醚酮及其复合材料增材制造机理与实验研究[D]. 长春:吉林大学, 2019. GENG P. Research on additive manufacturing mechanism of polyetheretherketone and its composites[D]. Changchun:Jilin University, 2019(in Chinese). [6] WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites:A review and prospective[J]. Composites Part B:Engineering, 2017, 110:442-458. [7] PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182:36-53. [8] 毕向军, 田小永, 张帅, 等. 连续纤维增强热塑性复合材料3D打印的研究进展[J]. 工程塑料应用, 2019, 47(2):138-142. BI X J, TIAN X Y, ZHANG S, et al. Research progress in 3D printing technology of continuous fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2019, 47(2):138-142(in Chinese). [9] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers:A review[J]. Additive Manufacturing, 2018, 21:1-16. [10] THOMPSON M K, MORONI G, VANEKER T, et al. Design for additive manufacturing:Trends, opportunities, considerations, and constraints[J]. CIRP Annals, 2016, 65(2):737-760. [11] 杰里米·里夫金. 第三次工业革命[M]. 张体伟, 孙豫宁, 译. 北京:中信出版社, 2012:27-141. RIFKIN J. The third industrial revolution[M]. ZHANG T W, SUN Y N, translated. Beijing:CITIC Press, 2012:27-141(in Chinese). [12] 姚俊峰, 张俊, 阙锦龙. 3D打印理论与应用[M]. 北京:科学出版社, 2017:15-37. YAO J F, ZHANG J, QUE J L. The theory and application of 3D printing[M]. Beijing:Science Press, 2017:15-37(in Chinese). [13] 国家制造强国建设战略咨询委员会, 中国工程院战略咨询中心. 《中国制造2025》重点领域技术创新绿皮书——技术路线图(2017)[M]. 北京:电子工业出版社, 2018:35-108, 233-295. National Manufacturing Strategy Advisory Committee, Chinese Academy of Engineering of Chinese Academy of Engineering. 《Made in China 2025》Green book for technological innovation in key fields-Technology Roadmap (2017)[M]. Beijing:Publishing House of Electronics Industry, 2018:35-108, 233-295(in Chinese). [14] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). [15] 闫东东, 单忠德, 战丽, 等. 3D打印复合材料开孔板力学性能影响规律[J]. 中国机械工程, 2020, 31(10):1240-1245. YAN D D, SHAN Z D, ZHAN L, et al. Influences law of mechanics properties of 3D printing composite open-hole plates[J]. China Mechanical Engineering, 2020, 31(10):1240-1245(in Chinese). [16] 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术, 2016, 59(15):26-31. TIAN X Y, LIU T F, YANG C C, et al. 3D printing for high performance fiber reinforced polymer composites and exploration on its applications[J]. Aeronautical Manufacturing Technology, 2016, 59(15):26-31(in Chinese). [17] 罗盟, 田小永, 尚俊凡, 等. 高性能纤维增强聚醚醚酮复合材料挤出成型增材制造现状与挑战[J]. 航空制造技术, 2020, 63(15):39-47. LUO M, TIAN X Y, SHANG J F, et al. Status and challenge of materials extrusion additive manufacturing for high-performance fiber reinforced poly(ether ether ketone) composites[J]. Aeronautical Manufacturing Technology, 2020, 63(15):39-47(in Chinese). [18] 田小永, 侯章浩, 张俊康, 等. 高性能树脂基复合材料轻质结构3D打印与性能研究[J]. 航空制造技术, 2017, 60(10):34-39. TIAN X Y, HOU Z H, ZHANG J K, et al. Study on 3D printing process and performance of resin matrix composite lightweight structure[J]. Aeronautical Manufacturing Technology, 2017, 60(10):34-39(in Chinese). [19] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports, 2016, 6:23058. [20] GRAY IV R W, BAIRD D G, BØHN J H. Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling[J]. Polymer Composites, 1998, 19(4):383-394. [21] MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures, 2016, 153:866-875. [22] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing, 2018, 22:176-186. [23] AKASHEH F, AGLAN H. Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication[J]. Journal of Elastomers & Plastics, 2019, 51(7-8):698-711. [24] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling:Effect of process parameters on mechanical properties[J]. Composites Science and Technology, 2019, 181:107688. [25] JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures, 2018, 185:537-548. [26] VAN DER KLIFT F, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials, 2016, 6(1):18-27. [27] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16:146-152. [28] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137:79-89. [29] CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing, 2019, 26:94-105. [30] OZTAN C, KARKKAINEN R, FITTIPALDI M, et al. Microstructure and mechanical properties of three dimensional-printed continuous fiber composites[J]. Journal of Composite Materials, 2019, 53(2):271-280. [31] AL ABADI H, THAI H T, PATON-COLE V, et al. Elastic properties of 3D printed fibre-reinforced structures[J]. Composite Structures, 2018, 193:8-18. [32] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies, 2019, 4(1):1800271. [33] MEI H, ALI Z, YAN Y K, et al. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites[J]. Additive Manufacturing, 2019, 27:150-158. [34] PYL L, KALTEREMIDOU K A, VAN HEMELRIJCK D. Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests[J]. Composites Science and Technology, 2019, 171:135-151. [35] YANG C C, TIAN X Y, LIU T F, et al. 3D printing for continuous fiber reinforced thermoplastic composites:Mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23(1):209-215. [36] TIAN X Y, LIU T F, WANG Q R, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production, 2017, 142:1609-1618. [37] LI N Y, LI Y G, LIU S T. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology, 2016, 238:218-225. [38] MING Y K, DUAN Y G, WANG B, et al. A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites[J]. Materials (Basel, Switzerland), 2019, 12(9):1369. [39] VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B:Engineering, 2019, 160:684-692. [40] 杨卫民, 鉴冉冉. 聚合物3D打印与3D复印技术[M]. 北京:化学工业出版社, 2018:1-14. YANG W M, JIAN R R. Polymer 3D printing technology[M]. Beijing:Chemical Industry Press, 2018:1-14(in Chinese). [41] PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design, 2017, 131:186-195. [42] ZINDANI D, KUMAR K. An insight into additive manufacturing of fiber reinforced polymer composite[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4):267-278. [43] NIKZAD M, MASOOD S H, SBARSKI I. Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling[J]. Materials & Design, 2011, 32(6):3448-3456. [44] LI Y, FENG Z Y, HUANG L J, et al. Additive manufacturing high performance graphene-based composites:A review[J]. Composites Part A:Applied Science and Manufacturing, 2019, 124:105483. [45] GNANASEKARAN K, HEIJMANS T, VAN BENNEKOM S, et al. 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling[J]. Applied Materials Today, 2017, 9:21-28. [46] BERRETTA S, DAVIES R, SHYNG Y T, et al. Fused Deposition Modelling of high temperature polymers:Exploring CNT PEEK composites[J]. Polymer Testing, 2017, 63:251-262. [47] VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites:State of the art and perspective[J]. Additive Manufacturing, 2020, 31:100962. [48] GOH G D, YAP Y L, TAN H K J, et al. Process-structure-properties in polymer additive manufacturing via material extrusion:A review[J]. Critical Reviews in Solid State and Materials Sciences, 2020, 45(2):113-133. [49] DOMINGO-ESPIN M, PUIGORIOL-FORCADA J M, GARCIA-GRANADA A A, et al. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts[J]. Materials & Design, 2015, 83:670-677. [50] SHI B H, SHANG Y Y, ZHANG P, et al. Dynamic capillary-driven additive manufacturing of continuous carbon fiber composite[J]. Matter, 2020, 2(6):1594-1604. [51] 明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3D打印[J]. 航空制造技术, 2019, 62(4):34-38, 46. MING Y K, DUAN Y G, WANG B, et al. 3D printing for high performance fiber reinforced polymer composites[J]. Aeronautical Manufacturing Technology, 2019, 62(4):34-38, 46(in Chinese). [52] ABBOTT A, GIBSON T, TANDON G P, et al. Melt extrusion and additive manufacturing of a thermosetting polyimide[J]. Additive Manufacturing, 2021, 37:101636. [53] HAO W F, LIU Y, ZHOU H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing, 2018, 65:29-34. [54] MING Y K, ZHANG S Q, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing, 2020, 33:101184. [55] KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites:History, mechanism, materials and properties[J]. Composite Structures, 2020, 232:111476. [56] CINCINNATI INC. Homepage[EB/OL]. 2020.http://www.e-c.com. [57] HASSEN A A, SPRINGFIELD R, LINDAHL J, et al. The durability of large-scale additive manufacturing composite molds[C]//CAMX Conference Proceedings. Arlington:American Composites Manufacturers Association, 2016. [58] THERMWOOD. Homepage[EB/OL]. 2020.http://www.thermwood.com. [59] SUN Q, RIZVI G M, BELLEHUMEUR C T, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2):72-80. [60] TIAN X Y, LIU T F, YANG C C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88:198-205. [61] LIU T F, TIAN X Y, ZHANG M Y, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 114:368-376. [62] 单忠德, 范聪泽, 孙启利, 等. 纤维增强树脂基复合材料增材制造技术与装备研究[J]. 中国机械工程, 2020, 31(2):221-226. SHAN Z D, FAN C Z, SUN Q L, et al. Research on additive manufacturing technology and equipment for fiber reinforced resin composites[J]. China Mechanical Engineering, 2020, 31(2):221-226(in Chinese). [63] YOUNG D, WETMORE N, CZABAJ M. Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene[J]. Additive Manufacturing, 2018, 22:508-515. [64] ALIHEIDARI N, TRIPURANENI R, AMELI A, et al. Fracture resistance measurement of fused deposition modeling 3D printed polymers[J]. Polymer Testing, 2017, 60:94-101. [65] NING F D, CONG W L, HU Y B, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling:Effects of process parameters on tensile properties[J]. Journal of Composite Materials, 2017, 51(4):451-462. [66] HOU Z H, TIAN X Y, ZHANG J K, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures, 2018, 184:1005-1010. [67] HU Q X, DUAN Y C, ZHANG H G, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science, 2018, 53(3):1887-1898. [68] CHACÓN J M, CAMINERO M A, GARCÍA-PLAZA E, et al. Additive manufacturing of PLA structures using fused deposition modelling:Effect of process parameters on mechanical properties and their optimal selection[J]. Materials & Design, 2017, 124:143-157. [69] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B:Engineering, 2018, 148:93-103. [70] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68:415-423. [71] Mark Forged. Homepage[EB/OL]. 2018. https://Markforged.com. [72] KOTLINSKI J. Mechanical properties of commercial rapid prototyping materials[J]. Rapid Prototyping Journal, 2014, 20(6):499-510. [73] LANZOTTI A, GRASSO M, STAIANO G, et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer[J]. Rapid Prototyping Journal, 2015, 21(5):604-617. [74] ISO/ASTM. Standard terminology for additive manufacturing-Coordinate system and test methodologies:52921-2013[S]. Geneva:ISO, 2013. [75] ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing, 2018, 22:157-164. [76] JANSSON A, PEJRYD L. Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering[J]. Additive Manufacturing, 2016, 9:7-13. [77] ONWUBOLU G C, RAYEGANI F. Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process[J]. International Journal of Manufacturing Engineering, 2014:598531. [78] SOOD A K, OHDAR R K, MAHAPATRA S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts[J]. Materials & Design, 2010, 31(1):287-295. [79] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking:Part I:Development[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(1):63-73. [80] PUCK A, SCHVRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7):1045-1067. [81] CHEN X M, SUN X S, WANG B W, et al. An improved longitudinal failure criterion for UD composites based on kinking model[J]. Mechanics of Advanced Materials and Structures, 2020:1-11. [82] 黄争鸣, 张华山. 纤维增强复合材料强度理论的研究现状与发展趋势:"破坏分析奥运会"评估综述[J]. 力学进展, 2007, 37(1):80-98. HUANG Z M, ZHANG H S. Current status and future trend of researches on the strength of fiber-reinforced composites-A summary of the results from a "failure Olympics"[J]. Advances in Mechanics, 2007, 37(1):80-98(in Chinese). [83] 姚辽军. 复合材料层间Ⅰ型静态及疲劳断裂机理研究[D]. 西安:西北工业大学, 2016. YAO L J. Mode Ⅰ quasi-static and fatigue delamination growth in composite laminates[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese). [84] YAO L J, CUI H, SUN Y, et al. Fibre-bridged fatigue delamination in multidirectional composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2018, 115:175-186. [85] CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241:112121. [86] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. Matrix cracking and delamination in laminated composites. Part I:Ply constitutive law, first ply failure and onset of delamination[J]. Mechanics of Materials, 2011, 43(4):169-185. [87] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A continuum damage model for composite laminates:Part I-Constitutive model[J]. Mechanics of Materials, 2007, 39(10):897-908. [88] GARCÍA-RODRÍGUEZ S M, COSTA J, MAIMÍ P, et al. Experimental demonstration of the in situ effect under transverse shear[J]. Composites Part A:Applied Science and Manufacturing, 2020, 138:106047. [89] ZUBILLAGA L, TURON A, RENART J, et al. An experimental study on matrix crack induced delamination in composite laminates[J]. Composite Structures, 2015, 127:10-17. [90] MORTELL D J, TANNER D A, MCCARTHY C T. In-situ SEM study of transverse cracking and delamination in laminated composite materials[J]. Composites Science and Technology, 2014, 105:118-126. [91] NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B:Engineering, 2015, 80:369-378. [92] YEOLE P, HASSEN A A, KIM S, et al. Mechanical characterization of high-temperature carbon fiber-polyphenylene sulfide composites for large area extrusion deposition additive manufacturing[J]. Additive Manufacturing, 2020, 34:101255. [93] LUO M, TIAN X Y, SHANG J F, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 121:130-138. [94] 张曼玉, 刘腾飞, 田小永, 等. 面向3D打印的连续碳纤维上浆工艺及其对复合材料性能的影响[J]. 中国材料进展, 2020, 39(5):349-355, 363. ZHANG M Y, LIU T F, TIAN X Y, et al. Sizing process of continuous carbon fiber for 3D printing and its influence on the properties of composites[J]. Materials China, 2020, 39(5):349-355, 363(in Chinese). [95] 赵广宾, 秦勉, 刘雨, 等. 聚醚醚酮熔融沉积成形强度工艺参数的优化[J]. 机械工程学报, 2020, 56(3):216-222. ZHAO G B, QIN M, LIU Y, et al. Optimizing fused deposition molding process parameters for improving forming strength of polyetheretherketone[J]. Journal of Mechanical Engineering, 2020, 56(3):216-222(in Chinese). [96] WANG J L, XIE H M, WENG Z X, et al. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling[J]. Materials & Design, 2016, 105:152-159. [97] BETTINI P, ALITTA G, SALA G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic[J]. Journal of Materials Engineering and Performance, 2017, 26(2):843-848. [98] DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures, 2019, 212:381-388. [99] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese). [100] KISHORE V, AJINJERU C, NYCZ A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components[J]. Additive Manufacturing, 2017, 14:7-12. [101] DRANSFIELD K, BAILLIE C, MAI Y W. Improving the delamination resistance of CFRP by stitching-A review[J]. Composites Science and Technology, 1994, 50(3):305-317. [102] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(12):2383-2397. [103] PEGORIN F, PINGKARAWAT K, DAYNES S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites[J]. Composites Part B:Engineering, 2015, 78:298-307. [104] STORCK S, MALECKI H, SHAH T, et al. Improvements in interlaminar strength:A carbon nanotube approach[J]. Composites Part B:Engineering, 2011, 42(6):1508-1516. [105] FALZON B G, HAWKINS S C, HUYNH C P, et al. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface[J]. Composite Structures, 2013, 106:65-73. [106] 矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001, 31(4):36-39. JIAO G Q, NING R C, LU Z X, et al. A study on interleaved composites[J]. Aerospace Materials & Technology, 2001, 31(4):36-39(in Chinese). [107] HOJO M, ANDO T, TANAKA M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10):1154-1165. [108] DUTY C, FAILLA J, KIM S, et al. Z-pinning approach for 3D printing mechanically isotropic materials[J]. Additive Manufacturing, 2019, 27:175-184. [109] KIM S, SMITH T, FAILLA J, et al. Parametric analysis on vertical pins for strengthening extrusion-based printed parts[C]//SAMPE 2018. Diamond Bar:Society for the Advancement of Material and Process Engineering, 2018. [110] DUTY C, FAILLA J, KIM S, et al. Reducing mechanical anisotropy in extrusion-based printed parts[C]//Solid Freeform Fabrication:Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:University of Austin, 2017:1602-1612. [111] DUTY C, FAILLA J, KIM S, et al. Z-pining approach for reducing anisotropy of 3D printed parts[C]//Solid Freeform Fabrication:Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:University of Austin, 2018:2405-2412. [112] ISLAM M S, PRABHAKAR P. Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing[J]. Materials & Design, 2017, 133:332-339. [113] DAMODARAN V, CASTELLANOS A G, MILOSTAN M, et al. Improving the Mode-II interlaminar fracture toughness of polymeric matrix composites through additive manufacturing[J]. Materials & Design, 2018, 157:60-73. [114] NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing, 2019, 26:227-241. [115] YU T, ZHANG Z Y, SONG S T, et al. Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites[J]. Composite Structures, 2019, 225:111147. [116] MELENKA G W, SCHOFIELD J S, DAWSON M R, et al. Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer[J]. Rapid Prototyping Journal, 2015, 21(5):618-627. [117] ZHANG H Q, YANG D M, SHENG Y. Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites:A preliminary numerical study[J]. Composites Part B:Engineering, 2018, 151:256-264. |
[1] | 张开铭, 王克鲁, 鲁世强, 柳木桐, 钟平, 田野. 基于响应面法的S280超高强度不锈钢的热变形行为[J]. 航空学报, 2023, 44(8): 427293-427293. |
[2] | 张志强, 于子鸣, 张天刚, 杨倩, 王浩. 激光熔覆TiC x 增强钛基复合涂层组织与增强相第一性原理研究[J]. 航空学报, 2023, 44(8): 427294-427294. |
[3] | 陈志闯, 葛声宏, 张卓磊, 朱玉川. 滑阀副零位内泄漏量分布模型与参数灵敏度分析[J]. 航空学报, 2023, 44(6): 427004-427004. |
[4] | 赵楠, 李多生, 叶寅, 刘奋成, 江五贵. 激光选区熔化成形GH5188合金微观组织及性能[J]. 航空学报, 2023, 44(19): 428332-428332. |
[5] | 孙洋, 黄建, 韩晨晨, 赵振强, 周海丽, 孙方方, 李超, 张超, 张立泉. 二维与三维机织复合材料面内力学性能对比[J]. 航空学报, 2023, 44(18): 428267-428267. |
[6] | 陈江波, 曾凯, 邢保英, 张洪申, 丁燕芳, 何晓聪. 铝合金-胶膜压印/粘接复合连接工艺及接头失效分析[J]. 航空学报, 2023, 44(14): 428029-428029. |
[7] | 刘增飞, 刘凯, 张斌斌, 李雪枫, 葛敬冉, 黄建, 李超, 孙新杨, 孙煜, 梁军. 纱线规格对3D机织复合材料拉伸性能的影响[J]. 航空学报, 2022, 43(6): 525453-525453. |
[8] | 刘振东, 郑锡涛, 范雯静, 张东健. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117-526117. |
[9] | 赵天, 李营, 张超, 姚辽军, 黄怿行, 黄治新, 陈诚, 汪万栋, 祖磊, 周华民, 裘进浩, 邱志平, 方岱宁. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851-526851. |
[10] | 杨光, 刘雪东, 王琮玮, 王琮瑜, 刘大志. 基于温度场模拟的镁合金SLM元素烧损行为[J]. 航空学报, 2022, 43(4): 525639-525639. |
[11] | 赵可汗, 刘多, 朱海涛, 陈斌, 胡胜鹏, 宋晓国. 钎焊温度对C/C/AgCuTi+Cf/TC4接头组织及力学性能的影响[J]. 航空学报, 2022, 43(4): 525007-525007. |
[12] | 王秒, 王微, 杨云龙, 檀财旺, 王刚. 钎焊时间对CoFeNiCrCu高熵钎料钎焊SiC陶瓷接头组织与性能的影响[J]. 航空学报, 2022, 43(4): 525057-525057. |
[13] | 陈波, 孟正, 马程远, 席鑫, 王昕欣, 檀财旺, 宋晓国. 扫描振镜激光TC4钛合金焊接性能及熔池流动行为[J]. 航空学报, 2022, 43(4): 525223-525223. |
[14] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[15] | 李晓鹏, 韩瑞, 钱旭升, 张秉刚, 王克鸿. 添加硼元素对Ni-25at% Si/Ti600接头组织性能的影响规律[J]. 航空学报, 2022, 43(2): 625069-625069. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学