航空学报 > 2021, Vol. 42 Issue (2): 324290-324290   doi: 10.7527/S1000-6893.2020.24290

基于脑电和眼动信号的人机交互意图识别

王崴1, 赵敏睿1, 高虹霓1, 朱帅1, 瞿珏1,2   

  1. 1. 空军工程大学 防空反导学院, 西安 710051;
    2. 西北工业大学 航空学院, 西安 710072
  • 收稿日期:2020-05-26 修回日期:2020-06-15 发布日期:2020-07-17
  • 通讯作者: 瞿珏 E-mail:qujue402@sina.com
  • 基金资助:
    国家自然科学基金(51675530)

Human-computer interaction: Intention recognition based on EEG and eye tracking

WANG Wei1, ZHAO Minrui1, GAO Hongni1, ZHU Shuai1, QU Jue1,2   

  1. 1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2020-05-26 Revised:2020-06-15 Published:2020-07-17
  • Supported by:
    National Natural Science Foundation of China (51675530)

摘要: 意图识别在人机交互(HCI)领域受到广泛关注,传统人机交互意图识别方法单纯依靠脑电(EEG)或眼动数据,不能很好地利用2种方法优点。为此,提出了一种融合脑电和眼动数据的人机交互意图识别方法,通过采集脑电和眼动信号,进行特征提取,输入机器学习模式识别网络进行意图识别,并基于Dempster-Shafer (D-S)证据理论进行决策层融合得出最终识别结果。招募了20名有效受试者进行交互意图识别实验,结果表明,基于脑电和眼动信号的人机交互意图识别方法识别准确率高于单纯依靠脑电和眼动数据的方法,可为下一步飞行器和武器系统人机交互系统自适应设计提供理论依据和技术支持。

关键词: 脑电, 眼动, 意图识别, 人机交互, 数据融合

Abstract: Intention recognition has received extensive attention in the field of Human-Computer Interaction (HCI). Traditional HCI intention recognition methods rely solely on an electroencephalogram (EEG) or eye movement data without making full use of the advantages of the two methods. This paper proposes an HCI intention recognition method that fuses EEG and eye movement data. It collects EEG and eye movement signals for feature extraction and inputs them into the network of machine learning and pattern recognition for intent recognition. Based on the Dempster-Shafer(D-S) evidence theory, the fusion of the decision layer is performed to obtain the final recognition result. In this study, 20 effective subjects are recruited for interactive intention recognition experiments. Results show that the recognition accuracy of the HCI intention recognition method based on EEG and eye movement signals is higher than that of traditional methods. Therefore, it can provide theoretical and technical support for the adaptive design of the HCI interface in aircraft and weapon equipment systems.

Key words: EEG, eye movement, intention recognition, human-computer interaction, data fusion

中图分类号: