[1] 何锋, 周璇, 赵长啸, 等. 航空电子系统机载网络实时性能评价技术[J]. 北京航空航天大学学报, 2020, 46(4):651-665. HE F, ZHOU X, ZHAO C X, et al. Real-time performance evaluation technology of airborne network for avionics system network for avionics system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4):651-665(in Chinese). [2] 何锋. 航空电子系统综合调度理论与方法[M]. 北京:清华大学出版社, 2017. HE F. Theory and approach to avionics system integrated scheduling[M]. Beijing:Tsinghua University Press, 2017(in Chinese). [3] SAE. Time-triggered Ethernet:AS6802[S]. Warrendale:SAE International, 2011. [4] POZO F, RODRIGUEZ-NAVAS G, STEINER W, et al. Period-aware segmented synthesis of schedules for multi-hop time-triggered networks[C]//2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). Piscataway:IEEE Press, 2016:170-175. [5] STEINER W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks[C]//201031 st IEEE Real-Time Systems Symposium. Piscataway:IEEE Press, 2010:375-384. [6] 张英静, 何锋, 卢广山, 等. 基于TTE的改进加权轮询调度算法[J]. 北京航空航天大学学报, 2017, 43(8):1577-1584. ZHANG Y J, HE F, LU G S, et al. A modified weighted round robin scheduling algorithm in TTE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1577-1584(in Chinese). [7] POZO F, STEINER W, RODRIGUEZ-NAVAS G, et al. A decomposition approach for SMT-based schedule synthesis for time-triggered networks[C]//2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).Piscataway:IEEE Press, 2015:1-8. [8] CRACIUNAS S S, OLIVER R S. SMT-based task-and network-level static schedule generation for time-triggered networked systems[C]//Proceedings of the 22nd International Conference on Real-Time Networks and Systems-RTNS'14. New York:ACM Press, 2014:45-54. [9] ZHANG L C, GOSWAMI D, SCHNEIDER R, et al. Task-and network-level schedule co-synthesis of Ethernet-based time-triggered systems[C]//2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). Piscataway:IEEE Press, 2014:119-124. [10] BLIKSTAD M, KARLSSON E, LÖÖW T, et al. An optimization approach for pre-runtime scheduling of tasks and communication in an integrated modular avionic system[J]. Optimization and Engineering, 2018, 19(4):977-1004. [11] CRACIUNAS S S, OLIVER R S. Combined task-and network-level scheduling for distributed time-triggered systems[J]. Real-Time Systems, 2016, 52(2):161-200. [12] ZHOU X, XIONG H G, HE F. Hybrid partition-and network-level scheduling design for distributed integrated modular avionics systems[J]. Chinese Journal of Aeronautics, 2020, 33(1):308-323. [13] TAMAS-SELICEAN D, POP P, STEINER W. Synthesis of communication schedules for TTEthernet-based mixed-criticality systems[C]//Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis-CODES+ISSS'12. New York:ACM Press, 2012. [14] TǍMAŞ-SELICEAN D, POP P, STEINER W. Design optimization of TTEthernet-based distributed real-time systems[J]. Real-Time Systems, 2015, 51(1):1-35. [15] NAM M Y, LEE J, PARK K J, et al. Guaranteeing the end-to-end latency of an IMA system with an increasing workload[J]. IEEE Transactions on Computers, 2014, 63(6):1460-1473. [16] ZHANG Y J, HE F, LU G S, et al. An imporosity message scheduling based on modified genetic algorithm for time-triggered Ethernet[J]. Science China Information Sciences, 2017, 61(1):1-3. [17] 李浩若, 何锋, 郑重, 等. 基于强化学习的时间触发通信调度方法[J]. 北京航空航天大学学报, 2019, 45(9):1894-1901. LI H R, HE F, ZHENG Z, et al. Time-triggered communication scheduling method based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9):1894-1901(in Chinese). [18] S 15531/MIL-STD-1553B digital time division command/response multiplex data bus[M]//Digital Avionics Handbook. Los Angeles:CRC Press, 2000:17-42. [19] 詹盼盼, 郭坚, 刘欣. 基于时间触发的1553B总线实时调度设计[J]. 中国空间科学技术, 2016, 36(6):77-82. ZHAN P P, GUO J, LIU X. Real time scheduling based on time triggered 1553B bus[J]. Chinese Space Science and Technology, 2016, 36(6):77-82(in Chinese). [20] SAE AS6003. TTP Communication Protocol[S]. Washington, D.C.:Society of Automotive Engineers, 2009. [21] FUEHRER T, MUELLER B, HARTWICH F, et al. Time triggered CAN (TTCAN)[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA:SAE International, 2001. [22] 刘晚春, 李峭, 何锋, 等. 时间触发以太网同步及调度机制的研究[J]. 航空计算技术, 2011, 41(4):122-127. LIU W C, LI Q, HE F, et al. Research on time-triggerd-Ethernet synchronization and scheduling mechanism[J]. Aeronautical Computing Technique, 2011, 41(4):122-127(in Chinese). [23] IEEE. IEEE 802.1Qbv Standard[DB/OL].[2020-03-12]. http://www.ieee802.org/1/pages/802.1bv.html. [24] STEINER W, BAUER G, HALL B, et al. TTEthernet dataflow concept[C]//2009 Eighth IEEE International Symposium on Network Computing and Applications. Piscataway, NJ:IEEE Press, 2009:319-322. [25] 蒋泳波, 杨春, 高雅, 等. 一种低复杂度的单多播集成调度算法[J]. 西安电子科技大学学报(自然科学版), 2013, 40(4):42-47. JIANG Y B, YANG C, GAO Y, et al. Integration of unicast and multicast scheduling with low complexity[J]. Journal of Xidian University (Natural Science), 2013, 40(4):42-47(in Chinese). [26] WANG W, WU G Y, GUO Z, et al. Data scheduling and resource optimization for fog computing architecture in industrial IoT[M]//Distributed Computing and Internet Technology. Cham:Springer International Publishing, 2018:141-149. [27] LI Z H, WAN H, PANG Z Y, et al. An enhanced reconfiguration for deterministic transmission in time-triggered networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(3):1124-1137. [28] 焦文喆, 翟正军, 王国庆. 时间触发AFDX调度设计及实时性分析[J]. 计算机工程, 2016, 42(7):42-48. JIAO W Z, ZHAI Z J, WANG G Q. Scheduling design and instantaneity analysis of time-triggered AFDX[J]. Computer Engineering, 2016, 42(7):42-48(in Chinese). [29] ZHAO L X, POP P, LI Q, et al. Timing analysis of rate-constrained traffic in TTEthernet using network calculus[J]. Real-Time Systems, 2017, 53(2):254-287. |