航空学报 > 2020, Vol. 41 Issue (7): 323661-323661   doi: 10.7527/S1000-6893.2019.23661

适应拓扑变化的拥塞最小化网络更新策略

吕娜1, 陈坤1, 陈柯帆2, 朱海峰1, 潘武1   

  1. 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 中国人民解放军94860部队, 南京 210000
  • 收稿日期:2019-11-18 修回日期:2019-12-16 出版日期:2020-07-15 发布日期:2020-07-28
  • 通讯作者: 陈坤 E-mail:648315977@qq.com
  • 基金资助:
    国家自然科学基金(61703427)

Congestion-minimization network update strategy for topology changes

LYU Na1, CHEN Kun1, CHEN Kefan2, ZHU Haifeng1, PAN Wu1   

  1. 1. College of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. Unit 94860 of PLA, Nanjing 210000, China
  • Received:2019-11-18 Revised:2019-12-16 Online:2020-07-15 Published:2020-07-28
  • Supported by:
    National Natural Science Foundation of China (61703427)

摘要: 软件定义网络的出现推动了航空集群机载网络的发展,同时也为机载网络的一致性更新带来了挑战。针对拓扑变化导致的网络更新期间可用路径失效问题,提出适应拓扑变化的拥塞最小化网络更新策略。首先,为减少可用路径失效带来的数据包丢失,在更新之前采用重路由机制进行处理;然后,针对重路由机制可能引起的网络拥塞,设计了贪婪流迁移算法缓解拥塞;最后,通过瞬时拥塞最小化更新算法完成整个网络更新。仿真结果表明:与传统的拥塞一致性更新算法相比,所提更新策略用规则开销、瞬时网络拥塞方面的少量提高换取了网络更新期间数据包丢失的显著降低。

关键词: 航空集群, 机载网络, 软件定义网络, 网络更新, 拓扑变化, 容量一致性

Abstract: The emergence of software-defined networking has accelerated the development of airborne networks of aviation swarm, while also presenting challenges for their consistency update. To solve the failure problem of available paths during network update caused by topology changes, a congestion-minimization network update strategy for topology changes is proposed. Firstly, to reduce the packet loss caused by the failure of available paths, the rerouting mechanism is used for processing before the update. Then, for the network congestion caused by the rerouting mechanism, the greedy flow migration algorithm is designed to reduce the network congestion. Finally, the entire network update is completed by the instantaneous congestion minimization update algorithm. The simulation results show that compared with the traditional congestion consistency update algorithm, the update strategy proposed in this paper allows a small increase in the overhead of rules and instantaneous network congestion in exchange for a significant reduction in packet loss during network update.

Key words: aviation swarm, airborne networks, software-defined networking, network update, topology changes, capacity consistency

中图分类号: