[1] WAITHE K A, DEERE K A. Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring:AIAA-2003-3802[R]. Reston:AIAA, 2003. [2] 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J].航空学报, 2019, 40(3):022698. CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):022698(in Chinese). [3] 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J].航空学报, 2018, 39(4):121648. TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121648(in Chinese). [4] 宋亚飞, 高峰, 何至林. 流体推力矢量技术[J].飞航导弹, 2010(11):71-75. SONG Y F, GAO F, HE Z L. Fluid thrust vector technology[J].Winged Missile Journal, 2010(11):71-75(in Chinese). [5] 肖中云,江雄,牟斌,等.流体推力矢量技术研究综述[J].实验流体力学,2017,31(4):8-15. XIAO Z Y, JIANG X, MOU B, et al. Review of fluid thrust vector technology[J].Journal of Experiments in Fluid Mechanics, 2017,31(4):8-15(in Chinese). [6] HALOULAKOS V E. Fluidic thrust vector control[C]//1982 American Control Conference. Piscataway:IEEE Press, 1982:1164-1165. [7] CATON J L. Two-dimensional confined jet thrust vector control:Operating mechanisms and performance[R]. Wright-Patterson AFB:Air Force Institution of Technology, 1989. [8] PANITZ T, WASAN D T. Flow attachment to solidsurfaces:The Coanda effect[J].AIChE Journal,1972,18(1):51-57. [9] STRYKOWSKI P J, NICCUM D L. The stability of countercurrent mixing layers in circular jets[J].Journal of Fluidic Mechanics,1991,227(1):309-343. [10] CHIARELLI C, JOHNSEN R K, SHIEH C F, et al. Fluidic scale model multi-plane thrust vector control test result:AIAA-1993-2433[R]. Reston:AIAA, 1993. [11] 王强,付尧明,额日其太.流体注入的轴对称矢量喷管三维流场计算[J].推进技术,2002,23(6):441-444. WANG Q, FU Y M, ERIQITAI. 3-D flow field calculation of axisymmetric vectoring nozzle with fluid injection[J].Journal of Propulsion Technology,2002,23(6):441-444(in Chinese). [12] WING D J. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzel concept:NASA TP 3411[R]. Washington, D.C.:NASA, 1994. [13] CATT J A, MILLER D N, GIULIANO V J. A static investigation of fixed-geometry nozzle using fluidic injection for throat aera control:AIAA-1995-2064[R]. Reston:AIAA, 1995. [14] 范志鹏,徐惊雷,郭帅.次流通道对双喉道气动矢量喷管的性能影响研究[J].推进技术,2014, 35(9):1174-1180. FAN Z P, XU J L, GUO S. Effects of secondary injection pipe on dual throat nozzle thrust-vectoring performances[J].Journal of Propulsion Technology, 2014, 35(9):1174-1180(in Chinese). [15] GU R, XU J L. Effects of cavity on the performance of dual throat nozzle during the thrust-vectoring starting transient process[J].Journal of Engineering for Gas Turbines and Power, 2013,136(1):014502. [16] 谭慧俊,陈智.二元双喉道射流推力矢量喷管流动参数影响的数值模拟研究[J].空气动力学学报,2015,33(2):211-217. TAN H J, CHEN Z. Numerical simulation study onflow parameters of two element double throat jet thrust vectoring nozzle[J].Acta Aerodynamica Sinica, 2015,33(2):211-217(in Chinese). [17] 李念, 张堃元, 徐惊雷. 二维非对称喷管数值模拟与验证[J].航空动力学报, 2004, 19(6):63-66. LI N, ZHANG K Y, XU J L. Simulation and experiment validation of a two dimensional asymmetric ramp nozzle[J].Journal of Aerospace Power, 2004, 19(6):63-66(in Chinese). [18] SONG M J, CHANG H B, PARK S H. et al. Application of back-step Coanda flap for the supersonic co-flowing fluidic thrust vector control:AIAA-2013-3951[R]. Reston:AIAA, 2013. [19] SEKAR T C, KUSHARI A, MODY B, et al. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck[J].Experimental Thermal and Fluid Science,2017,86:189-203. [20] SAVVARIS A, BUONANNO A, TSOURDOS A. Design and development of the DEMON UAV fluidic flight control system:AIAA-2013-4820[R]. Reston:AIAA, 2013. [21] WILDE P I, BUONANNO A, CROWTHER W, et al. Aircraft control using fluidic maneuver effectors:AIAA-2008-6406[R]. Reston:AIAA, 2008. [22] DEERE K A. Summary of fluidic thrust vectoring research conducted at NASA Langley research center:AIAA-2003-3800[R]. Reston:AIAA, 2003. [23] 连永久.射流推力矢量控制技术研究[J].飞机设计,2008,28(2):19-24. LIAN Y J. Fluidic thrust vectoring techniques research[J].Journal of Aircraft Design,2008,28(2):19-24(in Chinese). [24] 顾瑞.新型双喉道气动矢量喷管机理与关键技术研究[D].南京:南京航空航天大学, 2013. GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). [25] 林泳辰, 徐惊雷, 韩杰星, 等.气动推力矢量无舵面飞翼的飞行实验[J].航空动力学报,2019,34(3):701-707. LIN Y C, XU J L, HAN J X, et al. Flight test of a fluidic thrust vectoring flying wing without rudder[J].Journal of Aerospace Power, 2019, 34(3):701-707(in Chinese). [26] 曹永飞.射流推力矢量控制[D].南京:南京航空航天大学,2012. CAO Y F. Jet thrust vector control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese). [27] 肖中云,顾蕴松,江雄,等.一种基于引射效应的流体推力矢量新技术研究[J].航空学报,2012,33(11):1967-1974. XIAO Z Y, GU Y S, JIANG X, et al. A New technology of fluid thrust vector based on ejection effect[J].Acta Aeronautica et Astronautica Sinca,2012,33(11):1967-1974(in Chinese). [28] 曹永飞,顾蕴松,程克明,等.基于被动二次流的射流偏转比例控制[J].航空学报,2015,36(3):757-763. CAO Y F, GU Y S, CEHNG K M, et al. Proportional control of jet deflecting based on passive secondary flow[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):757-763(in Chinese). [29] 韩杰星. 流体矢量喷管内外流耦合研究[D].南京:南京航空航天大学, 2018. HAN J X. A study for the inner-outer flow couping of the fluid thrust vector nozzle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese). |