[1] Gregory P W, David A A. X-35B STOVL flight control law design and flying qualities, AIAA-2002-6018. Reston: AIAA, 2002.[2] Neil M. A flexible jet fighter[J]. Innovation, 2009, 41(12): 21-27.[3] Hamstra J W, McCallum B N. Tactical aircraft aerodynamic integration[M]//Encyclopedia of Aerospace Engineering.: John Wiley & Sons, Ltd, 2010: 1-14.[4] Fan Y, Meng X Y, Yang X L, et al. Control allocation for a V/STOL aircraft based on robust fuzzy control[J]. Science China Information Science, 2011, 54: 1321-1326.[5] Fan Y, Zhu J H, Meng X Y, et al. Intelligent method based coordinated integrated flight control of a tailless STOVL//Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan: Shandong University, 2010: 85-90. (in Chinese) 范勇, 朱纪洪, 孟宪宇, 等. 基于智能方法的无尾布局垂直短距起降飞机协调综合控制//第八届国际智能控制与自动化会议论文集. 济南: 山东大学, 2010: 85-90.[6] Franklin J A. Revised simulation model of the control system, displays, and propulsion system for an ASTOVL lift fan aircraft, NASA-TM-112208. Moffett Field, California: National Aeronautics and Space Administration, Ames Research Center, 1997: 10-13.[7] Yang X L, Fan Y, Zhu J H. Transition flight control of two vertical/short takeoff and landing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 371-385.[8] Wang X Y, Zhu J H, Liu K. Short takeoff control law design for a V/STOL aircraft using robust nonlinear dynamic inversion//Yangzhou International Conference on Information Science and Engineering, 2011: 1-5.[9] Wang X Y, Zhu J H, Zhang Y J. Dynamics modeling and analysis of thrust-vectored V/STOL aircraft//The 32nd Chinese Control Conference, 2013: 1825-1830. (in Chinese) 王向阳, 朱纪洪, 张义军. 推力矢量型V/STOL飞机动力学建模与分析//第32届中国控制会议, 2013: 1825-1830.[10] Frank K L, Douglas A T. Performance analysis of STOVL aircraft nozzle in hover, AIAA-2003-0184. Reston: AIAA, 2003.[11] Terrier D A, Lu F K. Aerodynamically controlled expansion nozzle for STOVL aircraft, AIAA-2003-0185. Reston: AIAA, 2003.[12] Lazic D, Ristanovic M. Electrohydraulic thrust vector control of twin rocket engines with position feedback via angular transducers[J]. Control Engineering Practice, 2007, 15(5): 583-594.[13] Ma K, Mehrdad N G. Precision positioning of a parallel manipulator for spacecraft thrust vector control[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 185-188.[14] Allan Y L, Alan S, Rebekah T, et al. Preliminary characterization of the Altair lunar lander slosh dynamics and some implications for the thrust vector control design, AIAA-2010-7721. Reston: AIAA, 2010.[15] Vladislav K, Nicholas C, Maurizio P. MASUV-1: a miniature underwater vehicle with multidirectional thrust vectoring for safe animal interactions[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(3): 563-571.[16] Li Y, Lu H, Tian S, et al. Posture control of electromechanical-actuator-based thrust vector system for aircraft engine[J]. IEEE Transactions on Industrial on Electronics, 2012, 59(9): 3561-3571.[17] Xiao Z Y, Gu Y S, Jiang X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1967-1974. (in Chinese) 肖中云, 顾蕴松, 江雄, 等.一种基于引射效应的流体推力矢量新技术[J].航空学报, 2012, 33(11): 1967-1974.[18] Bordignon K, Bessolo J. Control allocation for the X-35B, AIAA-2002-6020. Reston: AIAA, 2002. |