[1] |
DENEU F, MALASSIGNE M, LE-COULS O, et al. Promising solutions for fully reusable two-stage-to-orbit configurations[J]. Acta Astronautica, 2005, 56(8):729-736.
|
[2] |
高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2):145-152. GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2):145-152(in Chinese).
|
[3] |
ALEXANDER N, VLADIMIR N. Reusable space planes challenges and control problems[J]. IFAC-Paperonrime, 2016, 49(17):480-485.
|
[4] |
MEDITCH J S. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control, 1964, 9(4):477-484.
|
[5] |
MIELE A. The Calculus of variations in applied aerodynamics and flight mechanics[J]. Mathematics in Science & Engineering, 1962, 5:99-170.
|
[6] |
KLUMPP A R. Apollo lunar descent guidance[J]. Automatica, 1974, 10(2):133-146.
|
[7] |
SOSTARIC R, REA J. Powered descent guidance methods for the moon and mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
|
[8] |
ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
|
[9] |
BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171.
|
[10] |
NESTEROV Y E, TODD M J. Self-scaled barriers and interior-point methods for convex programming[J]. Mathematics of Operations Research, 1997, 22(1):1-42.
|
[11] |
LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.
|
[12] |
路钊. 高超声速飞行器再入末段轨迹在线优化[D]. 哈尔滨:哈尔滨工业大学, 2014:39-74. LU Z. Online trajectory optimization for the terminal stage of retry hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2014:39-74(in Chinese).
|
[13] |
张志国, 马英, 耿光有, 等. 火箭垂直回收着陆段在线制导凸优化方法[J]. 弹道学报, 2017, 29(1):9-16. ZHANG Z G, MA Y, GENG G Y, et al. Convex optimization method used in the landing-phase online guidance of rocket vertical recovery[J]. Journal of Ballistics, 2017, 29(1):9-16(in Chinese).
|
[14] |
LIU X F, SHEN Z, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance Control & Dynamics, 2015, 39(2):1-15.
|
[15] |
LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1):65-77.
|
[16] |
宋建梅, 张天桥. 带末端落角约束的变结构导引律[J]. 弹道学报, 2001, 13(1):16-20. SONG J M, ZHANG T Q. The passive homing missiles variable structure proportional navigation with terminal impact angular constraint[J]. Journal of Ballistics, 2001, 13(1):16-20(in Chinese).
|
[17] |
TOH K C, TODD M J. SDPT3-a MATLAB software package for semidefinite programming[J]. Optimization Methods & Software, 1999, 11(1-4):545-581.
|
[18] |
马爽, 杨军, 袁博. 基于多项式函数求解的落角约束制导律[J]. 导航定位与授时, 2018, 5(5):43-47. MA S, YANG J, YUAN B. Impact angle constraint guidance law proposed by polynomial function[J]. Navigation Positioning & Timing, 2018, 5(5):43-47(in Chinese).
|
[19] |
DINH Q T, SAVORGNAN C, DIEHL M. Real-time sequential convex programming for nonlonear model predictive control and applications to a hydro-power plant[C]//2012 Decision & Control & European Control Conference. Piscataway:IEEE Press, 2012.
|
[20] |
JIANG H, AN Z, YU Y N, et al. Cooperative guidance with multiple constraints using convex optimization[J]. Aerospace Science and Technology, 2018, 79:426-440.
|
[21] |
LU P, LIU X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):375-389.
|