[1] |
YU S L, SHIEH S L, HUANG Y M, et al. 5G new radio:Waveform, frame structure, multiple access, and initial access[J]. IEEE Communications Magazine, 2017, 6:64-71.
|
[2] |
CAI Y, QIN Z, CUI F, et al. Modulation and multiple access for 5G networks[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1):629-646.
|
[3] |
SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access[C]//IEEE 77th Vehicular Technology Conference (VTC Spring). Piscataway, NJ:IEEE Press, 2013:1-5.
|
[4] |
ZHANG H, QIU Y, LONG K, et al. Resource allocation in NOMA based fog radio access networks[J]. IEEE Wireless Communications, 2018, 25(3):110-115.
|
[5] |
MOLTAFET M, AZMI P, MOKARI N, et al. Optimal and fair energy efficient resource allocation for energy harvesting enabled-PD-NOMA based HetNets[J]. IEEE Transactions on Wireless Communications, 2018, 17(3):2054-2067.
|
[6] |
MAHRUKH L, ARIFFIN N K, TARIK A L, et al. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks:An overview[J]. Wireless Networks, 2018, 7:1-23.
|
[7] |
MIN K H, NGUYEN H V, KANG G M, et al. Device-to-device communications underlying an uplink SCMA system[J]. IEEE Access, 2019, 7:21756-21768.
|
[8] |
袁志锋, 郁光辉, 李卫敏. 面向5G的MUSA多用户共享接入[J]. 电信网技术, 2015(5):28-31. YUAN Z F, YU G H, LI W M. Multi-user shared access for 5G wireless networks[J]. Telecommunications Network Technology, 2015(5):28-31(in Chinese).
|
[9] |
CHEN S, REN B, GAO Q, et al. Pattern division multiple access (PDMA)-a novel non-orthogonal multiple access for 5G radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 66(4):3185-3196.
|
[10] |
LUO J, TANG J, SO D K C, et al. A deep learning-based approach to power minimization in multi-carrier NOMA with SWIPT[J]. IEEE Access, 2019, 7:17450-17460.
|
[11] |
Qualcomm Incorporated. Candidate NR multiple access schemes[OL]. (2016-04-15)[2019-04-17]. http://www.3gpp.org/DynaReport/TDocExMtg--R1-84b--31661.htm.
|
[12] |
MAZO J E. Faster than Nyquist signaling[J]. The Bell System Technical Journal, 2014, 54(8):1451-1462.
|
[13] |
MAZO J E, LANDAU H. On the minimum distance problem for faster-than-Nyquist signaling[J]. IEEE Transactions on Information Theory, 1988, 34(6):1420-1427.
|
[14] |
CAO Q S, LIANG D Q. Study on modulation techniques free of orthogonality restriction[J]. Science in China, Series F, 2007, 50(6):889-896.
|
[15] |
LI D B. Overlapped multiplexing principle and an improved capacity on additive white Gaussian noise channel[J]. IEEE Access, 2017, 6:6840-6848.
|
[16] |
LIN P, WANG YF, LI D. Low-complexity multiple-signal joint decoding for overlapped x domain multiplexing signaling[J]. IET Communications, 2018, 12(11):1273-1282.
|
[17] |
SLEPIAN D, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1):43-46.
|
[18] |
王红星, 陆发平, 刘传辉,等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6):1319-1325. WANG H X, LU F P, LIU C H, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics & Information Technology, 2017, 39(6):1319-1325(in Chinese).
|
[19] |
MAHATA K, HYDER M. Frequency estimation from arbitrary time samples[J]. IEEE Transactions on Signal Processing, 2016, 64(21):5634-5643.
|
[20] |
王红星, 赵志勇, 刘锡国, 等. 非正弦时域正交调制方法:中国.ZL200810159238.3[P]. 2011-02-02. WANG H X, ZHAO Z Y, LIU X G, et al. the non-sinusoidal orthogonal modulation in time domain:China. ZL2008159238.3[P]. 2011-02-02(in Chinese).
|
[21] |
CHEN Z N, WANG H X, LIU X G, et al. Maximal capacity non-orthogonal pulse shape modulation[J]. Chinese Journal of Aeronautics, 2015, 28(6):1699-1708.
|