[1] GUELMAN M. A qualitative study of proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(4):637-643. [2] RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):269-279. [3] ZHOU D, SUN S, TEO K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846. [4] 张友安, 黄诘, 孙阳平.带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3):848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sincia, 2014, 35(3):848-856(in Chinese). [5] 敦晓彪, 李君龙, 蔡婧竹. 拦截高机动目标的最优控制制导律[J]. 国防科技大学学报, 2018, 40(1):176-182. DUN X B, LI J L, CAI J Z. Optimal guidance law for intercepting high-speed maneuvering targets[J]. Journal of National University of Defense Technology, 2018, 40(1):176-182(in Chinese). [6] YANG C D, CHEN H Y. Nonlinear H infinity robust guidance law for homing missiles[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):882-890. [7] 刘延芳, 齐乃明, 夏齐, 等. 基于非线性模型的大气层内拦截弹微分对策制导律[J]. 航空学报, 2011, 32(7):1171-1179. LIU Y F, QI N M, XIA Q, et al. Differential game guidance law for endoatmospheric interceptor missiles based on nonlinear model[J]. Acta Aeronautica et Astronautica Sincia, 2011, 32(7):1171-1179(in Chinese). [8] 郭建国, 韩拓, 周军, 等. 基于基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2):320208. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sincia, 2017, 38(2):320208(in Chinese). [9] VENKATARAMAN S T, GULATI S. Control of nonlinear systems using terminal sliding modes[J]. Journal of Dynamic Systems, Measurement and Control, 1993, 115(3):554-560. [10] SONG J H, SONG S M, ZHOU H B. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Control, Automation and Systems, 2016, 14(1):99-114. [11] HE S M, LIN D. Sliding mode-based continuous guidance law with terminal angle constraint[J]. The Aeronautical Journal, 2016, 120(1229):1175-1194. [12] HE S M, LIN D. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(2):146-152. [13] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-278. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-278(in Chinese). [14] 杨锁昌, 张宽桥, 陈鹏. 带攻击角度约束的自适应终端滑模制导律[J]. 北京航空航天大学学报, 2016, 42(8):1566-1574. YANG S C, ZHANG K Q, CHEN P. Adaptive terminal sliding mode guidance with impact angle constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1566-1574(in Chinese). [15] XIONG S F, WANG W H, SONG S, et al. Extended state observer based impact angle constrained guidance law for maneuvering target interception[J]. Journal of Aerospace Engineering, 2015, 29(14):2589-2607. [16] ZHAO J L, ZHOU J. Strictly convergent nonsingular terminal sliding mode guidance law with impact angle constraints[J]. Optik, 2016, 127:10971-10980. [17] YU S H, YU X H, SHIRINZADEH B. Continuous finite time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964. [18] SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25:132-137. [19] ZHAO B, ZHOU J. Smooth adaptive finite time guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering, 2016(4):1-19. [20] 赵斌, 周军, 卢晓东, 等. 考虑终端角度约束的自适应积分滑模控制[J]. 控制与决策, 2017, 32(11):1966-1972. ZHAO B, ZHOU J, LU X D, et al. Adaptive integral sliding mode guidance law considering impact angle constraint[J]. Control and Decision, 2017, 32(11):1966-1972(in Chinese). [21] ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8):2996-3014. [22] TANG Y. Terminal sliding mode control for rigid robots[J]. Automatica, 1998, 34(1):51-56. |