[1] NOBLE D F. Schema-based knowledge elicitation for planning and situation assessment aids[J]. IEEE Transactions on Systems Man & Cybernetics, 1989, 19(3): 473-482. [2] JIANG W, HAN D, FAN X, et al. Research on threat assessment based on dempster-shafer evidence theory[J]. Lecture Notes in Electrical Engineering, 2012, 113: 975-984. [3] 李曼, 冯新喜, 张薇. 基于模板的态势估计推理模型与算法[J]. 火力与指挥控制, 2010, 35(6): 64-66. LI M, FENG X X, ZHANG W. Template-based inference model and algorithm for situation assessment in information fusion[J]. Fire Control & Command Control, 2010, 35(6): 64-66 (in Chinese). [4] BEN-BASSAT M, FREEDY E. Knowledge requirements and management in expert decision support systems for (military) situation assessment[J]. Systems Man & Cybernetics IEEE Transactions on, 1982, 12(4): 479-490. [5] 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13. WU Z Q, LI D F. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 (in Chinese). [6] CARLING R. Naval situation assessment using a real-time knowledge-based system[J]. Naval Engineers Journal, 2010, 111(5): 108-113. [7] JIN Q, GOU X, JIN W, et al. Intention recognition of aerial targets based on Bayesian optimization algorithm[C]//IEEE International Conference on Intelligent Transportation Engineering. Piscataway, NJ: IEEE Press, 2017: 356-359. [8] DAHLBOM A. A comparison of two approaches for situation detection in an air-to-air combat scenario[C]//Modeling Decisions for Artificial Intelligence. Berlin: Springer, 2013: 70-81. [9] CHEN Z G, WU X F. A novel multi-timescales layered intention recognition method[J]. Applied Mechanics & Materials, 2014, 644-650: 4607-4611. [10] 贾苏元, 徐金钰, 王钰. 基于自适应神经网络模糊系统(ANFIS)的空中目标意图分类[J]. 电子测量技术, 2016, 39(12): 62-66. JIA S Y, XU J Y, WANG Y. Classification of air target intention based on adaptive neural network fuzzy system(ANFIS)[J]. Electronic Measurement Technology, 2016, 39(12): 62-66 (in Chinese). [11] 陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853. CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38(8): 1847-1853 (in Chinese). [12] AHMED A A, MOHAMMED F M. SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network[J]. Journal of Computational Science, 2018, 25: 467-473. [13] 欧微, 柳少军, 贺筱媛, 等. 基于时序特征编码的目标战术意图识别算法[J]. 指挥控制与仿真, 2016, 38(6): 36-41. OU W, LIU S J, HE X Y, et al. Tactical intention recognition algorithm based on encoded temporal features[J]. Command Control & Simulation, 2016, 38(6): 36-41 (in Chinese). [14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [15] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//International Conference on Artificial Intelligence and Statistics. 2011: 315-323. [16] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. Computer Science, 2014: 1-5. [17] WANG L, ZHANG J, LIU P, et al. Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification[J]. Soft Computing, 2017, 21(1): 213-221: 1-15. [18] CHANG P, ZHANG J, HU J, et al. A deep neural network based on ELM for semi-supervised learning of image classification[J]. Neural Processing Letters, 2017, 48(1): 375-388. [19] ANSARI Z, SEYYEDSALEHI S A. Toward growing modular deep neural networks for continuous speech recognition[J]. Neural Computing & Applications, 2017, 28(S1): 1177-1196. [20] WEN Z, LI K, HUANG Z, et al. Improving deep neural network based speech synthesis through contextual feature parametrization and multi-task learning[J]. Journal of Signal Processing Systems, 2018, 90(7): 1025-1037. [21] CHEN K, DING G G. Attribute-based supervised deep learning model for action recognition[J]. Frontiers of Computer Science, 2017, 11(2): 219-229. [22] LI Q, QIU Z, YAO T, et al. Learning hierarchical video representation for action recognition[J]. International Journal of Multimedia Information Retrieval, 2017, 6(1): 85-98. |