[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J].力学进展, 2009, 39(6):658-673. CUI E J. Rearch development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese). [2] ANDERSON J D. Hypersonic and high temperature gas dynamics[M].New York:McGraw-Hill Book Company, 2000:1988-1989. [3] 姜维本. 高超声速试验设备设计[M].北京:国防工业出版社, 2001:9-14. JIANG W B. Hypersonic test facilities design[M]. Beijing:National Defence Industry Press, 2001:9-14(in Chinese). [4] LIU Q M, ZHANG L T, LIU T J, et al. The oxidation behavior of SiC-ZrC-SiC-coated C/SiC minicomposites at ultrahigh temperatures[J]. Journal of the American Ceramic Society, 2010, 93(12):3990-3992. [5] SAVINO R, FUMO D S, SILVESTRONI L, et al. Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials[J]. Journal of the European Ceramic Society, 2008, 28(9):1899-1907. [6] 隆永胜, 杨彦广, 陈爱国, 等. 电弧加热流场品质优化初步研究[J].推进技术, 2015, 36(12):1788-1794. LONG Y S, YANG Y G, CHEN A G, et al. A preliminary research of optimization for arc heated flow quality[J]. Journal of Propulsion Technology, 2015, 36(12):1788-1794(in Chinese). [7] FRANCESCO P, BERND H, OLIVIER C, et al. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions[J]. Carbon, 2014, 71:102-119. [8] 梁文林, 夏越良. 高频感应加热设备的原理、工程计算、调整与维修[M]. 北京:机械工业出版社, 1986:173-179. LIANG W L, XIA Y L. The principle, engineering calculation, adjustment and maintenance of high frequency induction heating facility[M]. Beijing:China Machine Press, 1986:173-179(in Chinese). [9] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10):121317. LIU L P, WANG G L, WANG Y G, et al. Test methods for determining surface catalytic propeties of thermal protection materials in high enthalpy chemical nonequilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317(in Chinese). [10] LIU L P, WANG Y G, WANG G L, et al. Experiments to determine surface catalytic recombination coefficients of ultra high temperature ceramics in high temperature dissociated flows:AIAA-2017-2153[R]. Reston, VA:AIAA, 2017. [11] ITO T, ISHIDA K, MIZUNO M, et al. 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003. [12] REED T B. Induction-coupled plasma torch[J]. Journal of Applied Physics, 1961, 32(5):821-824. [13] NEILAND V Y. TSNⅡMASH capabilities for aerogas dynamical and thermal testing of hypersonic vehicles:AIAA-1992-3962[R]. Reston, VA:AIAA, 1992. [14] BOTTIN B, CARBONARC M, STEFAN Z, et al. Aerothermodynamic design of an inductively coupled plasma wind tunnel:AIAA-1997-2498[R]. Reston, VA:AIAA, 1997. [15] BOTTIN B, PARIS S, CARBONARC M, et al. Experimental and computational determination of the VKI plasmatron operating envelope:AIAA-1999-3607[R]. Reston, VA:AIAA, 1999. [16] LUO L, WANG Y G, LIU L P, et al. Ablation behavior of C/SiC composites in plasma wind tunnel[J]. Carbon, 2016, 103:73-83. [17] OWENS W P, UHL J, DOUGHERTY M, et al. Development of a 30 kW inductively coupled plasma torch facility for aerospace material testing:AIAA-2010-4322[R].Reston, VA:AIAA, 2010. [18] BENTON R G, NOEL T C, PHILIP L V, et al. Characterization of a 50 kW inductively coupled plasma torch for testing of ablative thermal protection materials:AIAA-2017-0394[R]. Reston, VA:AIAA, 2017. [19] KOLESNIKOV A F. The concept of local simulation for stagnation point heat transfer in hypersonic flows:Application and validation:AIAA-2000-2515[J]. Reston, VA:AIAA, 2000. [20] FRANCESCO P, OLIVIER C, BERND H, et al. Gas/surface interaction study on ceramic matrix com-posite thermal protection system in the VKI plasmatron facility:AIAA-2011-3642[R]. Reston, VA:AIAA, 2011. [21] MACDONALD M E, JACOBS C M, LAUX C O. Measurements of air plasma/ablator interactions in a 50 kW inductively coupled plasma torch:AIAA-2013-2772[R]. Reston, VA:AIAA, 2013. [22] 杨栋, 王俊德, 赵宝昌, 等. 原子发射光谱双谱线法测量固体火箭发动机内燃气温度[J].光谱学与光谱分析, 2002, 22(2):307-310. YANG D, WANG J D, ZHAO B C, et al. Combustion gas temperature measurement in the chamber of solid rocket motor by double line of atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2002, 22(2):307-310(in Chinese). |