[1] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35(2):363-371. [2] ATKINS A G. Fracture in forming[J]. Journal of Materials Processing Technology, 1996, 56(1):609-618. [3] ZHANG Y, CHEN Z. On the effect of stress triaxiality on void coalescence[J]. International Journal of Fracture, 2007, 143(1):105-112. [4] FREUDENTHAL F A. The inelastic behaviour of solids[M]. New York:Wiley, 1950. [5] COCKCROFT M G, LATHAM D J. Ductility and the workability of metals[J]. The Institute of Metals, 1968, 96(1):33-39. [6] RICE J R, TRACY D M. On the ductile enlargement of voids in triaxiality stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217. [7] OYANE M. Criteria of ductile fracture strain[J]. Bulletin of JSME, 1972, 15(90):1507-1513. [8] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15. [9] OH S I, CHEN C C, KOBAYASHI S. Ductile fracture in axisymmetric extrusion and drawing[J]. Journal of Engineering for Industry, 1979, 101(1):36-44. [10] WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture:Simulation and prediction of engineering fracture tests:UCRL-53058[R]. San Leandro, CA:Lawrence Livermore National Laboratory, 1980. [11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. [12] 杨锋平, 罗金恒, 张华, 等. 金属延性断裂准则精度的评价[J]. 塑性工程学报, 2011, 18(2):103-106. YANG F P, LUO J H, ZHANG H, et al. Evaluation of ductile fracture criterions[J]. Journal of Plasticity Engineering, 2011, 18(2):103-106(in Chinese). [13] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98. [14] BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952. [15] DI Y, CAI L, CHEN B. A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J]. Chinese Journal of Aeronautics, 2016, 29(6):1626-1634. [16] 姚迪, 蔡力勋, 包陈, 等. 基于试验与有限元耦合技术的延性材料全程等效应力应变关系获取方法[J]. 固体力学学报, 2014, 35(3):226-240. YAO D, CAI L X, BAO C, et al. Determination of stress-strain curve of ductile materials by testing and finite element coupling method[J]. Chinese Journal of Solid Mechanics, 2014, 35(3):226-240(in Chinese). [17] 姚迪, 蔡力勋, 包陈. 延性材料全阶段应力应变关系获取方法[J]. 中国测试, 2014(5):5-13. YAO D, CAI L X, BAO C, et al. Approach for full-range uniaxial constitutive relationships of ductile materials[J].China Measurement and Test, 2014(5):5-13(in Chinese). [18] HUTCHINSON J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):13-31. [19] RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):1-12. [20] SHIH C F. Tables of Hutchinson-Rice-Rosengren singular field quantities[D]. Rhode Island:Brown University, 1983. [21] XIA L, SHIH C F. Ductile crack growth-I. A numerical study using computational cells with micro structurally-based length scales[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(2):233-259. [22] LANDES J D. The blunting line in elastic-plastic fracture[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(11):1289-1297. [23] 刘涛, 蔡力勋, 高怡斐, 等.金属材料准静态断裂韧度的统一试验方法:GB/T 21143-2014[S]. 北京:中国标准出版社, 2015. LIU T, CAI L X, GAO Y F, et al. Metallic materials-Unified method of test for determination of quasistatic fracture toughness:GB/T 21143-2014[S]. Beijing:Standards Press of China, 2015(in Chinese). |