[1] IM J H, KIM D, YOON Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions:AIAA-2005-3749[R]. Reston, VA:AIAA, 2005. [2] BAZAROV V G, YANG V. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power, 1998, 14(5):797-806. [3] NUNOME Y, TAMURA H, ONODERA T, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector:AIAA-2009-5389[R]. Reston, VA:AIAA, 2009. [4] IM J H, YOON Y. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector:AIAA-2008-4850[R]. Reston, VA:AIAA, 2008. [5] SIVAKUMAR D, KULKARNI V. Regimes of spray formation in gas-centered swirl coaxial atomizers[J]. Experimental Fluids, 2011, 51(3):587-596. [6] IM J H, KIM D, HAN P, et al. Self-pulsation characteristics of a gas-liquid swirl coaxial injector[J]. Atomization and Sprays, 2009, 19(1):57-74. [7] SASAKI M, SAKAMOTO H, TAKAHASHI M, et al. Comparative study of recessed and non-recessed swirl coaxial injectors:AIAA-1997-2907[R]. Reston, VA:AIAA, 1997. [8] BAZAROV V G. Self-pulsations in coaxial injectors with central swirl liquid stage:AIAA-1995-2358[R]. Reston, VA:AIAA, 1995. [9] BAZAROV V G. Non-linear interactions in liquid-propellant rocket engine injectors:AIAA-1998-4039[R]. Reston, VA:AIAA, 1998. [10] YANG L J, GE M H, ZHANG M Z, et al. Spray characteristics of recessed gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2008, 24(6):1332-1339. [11] 康忠涛, 张新桥, 成鹏, 等. 气核尺寸对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2014, 35(12):3283-3292. KANG Z T, ZHANG X Q, CHENG P, et al. Influence of gas core dimension on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3283-3292(in Chinese). [12] FU Q F, YANG L J. Theoretical investigation on the dynamics of a gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2011, 27(1):144-150. [13] HUANG Y, ZHOU J, HU X, et al. Acoustic model for the self-oscillation of coaxial swirl injector:AIAA-1997-3328[R]. Reston, VA:AIAA, 1997. [14] EBERHART C J, LINEBERRY D M, FREDERICK R A. Detailing the stability boundary of self-pulsations for a swirl-coaxial injector element:AIAA-2013-4064[R]. Reston, VA:AIAA, 2013. [15] LI Q, KANG Z, ZHANG X, et al. Effect of recess length on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Atomization and Sprays, 2016, 26(6):535-550. [16] KANG Z T, LI Q L, CHENG P, et al. Effects of recess on the self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2016, 32(5):1124-1132. [17] IM J H, SEONGHO C, YOON Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6):1196-1204. [18] KANG Z T, LI Q L, CHENG P, et al. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector[J]. Acta Astronautica, 2016, 127(1):249-259. [19] LIEUWEN T C. Unsteady combustor physics[M]. Cambridge:Cambridge University Press, 2012:90-93. [20] RICHECOEUR F. Experimentations and simulations numeric on interaction modes acoustic transve at flames cryotechniques[D]. Paris:Ecole Centrale Paris, 2006:68-95. [21] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine[J]. Acta Astronautica, 2008, 62(1):18-27. [22] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Effect of temperature fluctuations on high frequency acoustic coupling[J]. Proceedings of the Combustion Institute, 2009, 32(2):1663-1670. [23] RICHECOEUR F, SCOUFLAIRE P, DUCRUIX S, et al. Interactions between propellant jets and acoustic modes in liquid rocket engines:Experiments and simulations:AIAA-2006-4397[R]. Reston, VA:AIAA, 2006. [24] HARDI J S, SCOTT B, MICHAEL O, et al. Coupling behaviour of LOx/H2 flames to longitudinal and transverse acoustic instabilities:AIAA-2012-4087[R]. Reston, VA:AIAA, 2012. [25] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349. [26] MÉRY Y, HAKIM L, SCOUFLAIRE P, et al. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations[J]. Comptes Rendus Mecanique, 2013, 341(1-2):100-109. [27] YI T, SANTAVICCA D A. Forced flame response of turbulent liquid-fueled lean-direct-injection combustion to fuel modulations[J]. Journal of Propulsion and Power, 2009, 25(6):1259-1271. [28] LIU J, ZHANG X Q, LI Q L, et al. Effect of geometric parameters on the spray cone angle in the pressure swirl injector[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(2):342-353. [29] CHENG P, KANG Z, CHEN H, et al. Influence of pressure oscillation induced klystron effect on the inner flow and spray characteristics of pressure swirl injector[C]//Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems-Asia, 2016:1-8. |