[1] MINGIONE G, BRANDI V, ESPOSITO B. Ice accretion prediction on multi-element airfoils:AIAA-1997-0177[R]. Reston, VA:AIAA, 1997. [2] POURYOUSSEFI S G, MIRZAEI M, NAZEMI M, et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA23012 airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(3):585-595. [3] BROEREN A P. Aerodynamic simulation of runback ice accretion[J]. Journal of Aircraft, 2010, 47(3):924-939. [4] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20:29-42. [5] GHENAI C, KULKARNI S, LIN C X. Validation of LEWICE 2.2 icing software code:Comparison with LEWICE 2.0 and experimental data:AIAA-2005-1249[R]. Reston, VA:AIAA, 2005. [6] HEDDE T, GUFFOND D. ONERA three-dimensional icing model[J]. AIAA Journal, 1995, 33(6):1038-1045. [7] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinca, 2010, 31(11):2152-2158(in Chinese). [8] 申晓斌, 林桂平, 卜雪琴, 等. 发动机进气道短舱前缘结冰三维模拟研究[J]. 航空学报, 2013, 34(3):517-524. SHEN X B, LIN G P, BU X Q, et al. Three-dimensional simulation research on ice shape at engine inlet nacelle front[J]. Acta Aeronautica et Astronautica Sinca, 2013, 34(3):517-524(in Chinese). [9] CHEN X, ZHAO Q J. Numerical simulations for ice accretion on rotors using new three-dimensional icing model[J]. Journal of Aircraft, 2017, 54(4):1428-1442. [10] BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE:AIAA-1999-0246[R]. Reston, VA:AIAA, 1999. [11] MYERS T G, THOMPSON C P. Modeling the flow of water on aircraft in icing conditions[J]. AIAA Journal, 1998, 36(6):1010-1013. [12] MYERS T G. Extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2):211-218. [13] MYERS T G, HAMMOND D W. Ice and water film growth from incoming supercooled droplets[J]. International Journal of Heat and Mass Transfer, 1999, 42:2233-2242. [14] CAO Y H, HOU S. Extension to the Myers model for calculation of three-dimensional glaze icing[J]. Journal of Aircraft, 2016, 53(1):106-116. [15] CAO Y H, HUANG J S. New method for direct numerical simulation of three-dimensional ice accretion[J]. Journal of Aircraft, 2015, 52(2):650-659. [16] DANIEL M, SILVA D. Quasi-3D multi-step ice accretion simulation:AIAA-2012-0313[R]. Reston, VA:AIAA, 2012. [17] VERDIN P G, THOMPSON C P. Automatic multi-stepping approach for ice predictions[R]. State College, PSU:The Pennsylvania State University, 2005. [18] MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids, 2002, 14(8):2788-2803. [19] MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting glaze ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1):240-256. [20] WRIGHT W B, RUTKOWSKI A. Validation results for LEWICE 2.0:NASA CR-1999-208690[R]. Washington, D.C.:NASA, 1999. [21] PAPADAKIS M, YEONG H W. Aerodynamic performance of a swept wing with ice accretions:AIAA-2003-0731[R]. Reston, VA:AIAA, 2003. |