[1] LANG M, BAIER H, ERNST T. Surface accuracy prediction and optimization of a high precision Q/V-band reflector:AIAA-2006-2216[R]. Reston, VA:AIAA, 2006. [2] STEEVES J, PELLEGRINO S. Ultra-thin highly deformable composite mirrors:AIAA-2013-1523[R]. Reston, VA:AIAA, 2013. [3] FANG H F, HUANG P M, ZHOU Y, et al. Analytical investigation of a high precision reflector:AIAA-2014-1508[R]. Reston, VA:AIAA, 2014. [4] TANAKA H. Surface error estimation and correction of a space antenna based on antenna gain analyses[J]. Acta Astronautica, 2011, 68(7):1062-1069. [5] SANTIAGO P J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal, 2013, 5(3-4):89-115. [6] CHEN P C, OLIVERSEN R J,ROMEO R C. Fabrication and testing of ultra-lightweight Gossamer-class composite mirrors[C]//Highly Innovative Space Telescope Concepts. Bellingham, WA:SPIE, 2002:339-347. [7] EALEY M A, WELLMAN J A. Highly adaptive integrated meniscus primary mirrors[C]//UV/Optical/IR Space Telescopes:Innovative Technologies and Concepts.Bellingham, WA:SPIE, 2004:165-171. [8] 黄志荣, 宋燕平. 型面可调整反射器结构与调整技术概述[J]. 空间电子技术, 2010, 7(3):84-89. HUANG Z R, SONG Y P. A review on the structure and adjustment technology of an adjustable reflector[J]. Space Electronic Technology, 2010, 7(3):84-89(in Chinese). [9] CHOPRA I. Review of state of art of smart structures and integrated systems[J]. AIAA Journal, 2002, 40(11):2145-2187. [10] SCHRÖCK J, MEURER T, KUGI A. Motion planning for piezo-actuated flexible structures:Modeling, design, and experiment[J]. IEEE Transactions on Control Systems Technology, 2012, 21(3):807-819. [11] LAN L, JIANG S, ZHOU Y, et al. Geometry adaptive control of a composite reflector using PZT actuator[C]//Industrial and Commercial Applications of Smart Structures Technologies. Bellingham, WA:SPIE, 2015:943305. [12] LAN L, JIANG S, ZHOU Y, et al. Shape control of a reflector based on generalized zernike functions:AIAA-2016-0704[R]. Reston, VA:AIAA, 2016. [13] BRADFORD S C, AGNES G S, OHARA C M, et al. Piezocomposite actuator arrays for correcting and controlling wavefront error in reflectors:AIAA-2012-1743[R]. Reston, VA:AIAA, 2012. [14] BADFORD S C, WILKIE W K, AGNES G S, et al. Controlling wavefront in lightweight reflector systems using piezocomposite actuator arrays:AIAA-2013-1525[R]. Reston, VA:AIAA, 2013. [15] FANG H, PATTOM M, WANG K W, et al. Shape control of large membrane reflector with PVDF actuation:AIAA-2007-1842[R]. Reston, VA:AIAA, 2007. [16] 曹玉岩, 王志, 周超, 等. 压电智能反射面静态形状控制与作动器位置优化[J]. 航空学报, 2015, 36(2):527-537. CAO Y Y, WANG Z, ZHOU C, et al. Static shape control of piezoelectric smart reflector and optimization of actuators' placement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):527-537(in Chinese). [17] ABUSAFIEH A A, FEDERICO D R, CONNELL S J, et al. Dimensional stability of CFRP composites for space-based reflectors[C]//Optomechanical Design and Engineering. Bellingham, WA:SPIE,2001:9-16. [18] 董兴建, 孟光. 压电结构的热弹性比拟建模方法[J]. 应用力学学报, 2005, 22(3):346-350. DONG X J, MENG G. Thermal elastic analogy modeling method for piezoelectric structures[J]. Chinese Journal of Applied Mechanics, 2005, 22(3):346-350(in Chinese). [19] 李敏, 陈伟民, 王明春, 等. 压电驱动的载荷比拟方法[J]. 中国科学(E辑:技术科学), 2009, 39(11):1810-1817. LI M, CHEN W M, WANG M C, et al. A load simulation method of piezoelectric actuator in FEM for smart structures[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1810-1817(in Chinese). [20] ALLIK H, HUGHES T J R. Finite element method for piezoelectric vibration[J]. International Journal for Numerical Methods in Engineering, 1970, 2(2):151-157. |