[1] YAKIMENKO O A. Precision aerial delivery systems:Modeling, dynamics, and control[M]. Reston:AIAA, 2015:2-16.
[2] 朱旭, 曹义华. 翼伞平面形状对翼伞气动性能的影响[J]. 航空学报, 2011, 32(11):1998-2007. ZHU X, CAO Y H. Numerical simulation of planform geometry effect on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1998-2007 (in Chinese).
[3] 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7):1189-1200. ZHU X, CAO Y H. Effects of arc-anhedal angle, airfoil and leading edge cut on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200 (in Chinese).
[4] 张兴会, 朱二琳. 翼伞系统雀降性能及控制研究[J]. 航天控制, 2012, 30(1):29-33. ZHANG X H, ZHU E L. The study of the flare-landing performance and control of parafoil system[J]. Aerospace Control, 2012, 30(1):29-33 (in Chinese).
[5] 檀盼龙, 孙青林, 高海涛, 等. 动力翼伞系统空投风场的辨识与应用[J]. 航空学报, 2016, 37(7):2286-2294. TAN P L, SUN Q L, GAO H T, et al. Wind identification and application of the powered parafoil system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2286-2294 (in Chinese).
[6] LI Y, LIN H. Theoretical investigation of gliding parachute trajectory with deadband and non-proportional automatic homing control[C]//11th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 1991:42-47.
[7] ZHANG L M, GAO H T, CHEN Z Q, et al. Multi-objective global optimal parafoil homing trajectory optimization via gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1-2):1-8.
[8] TAO J, SUN Q L, ZHU E L, et al. Quantum genetic algorithm based homing trajectory planning of parafoil system[C]//34th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015:2523-2528.
[9] SIM A G, MURRAY J E, NEUFELD D C, et al. Development and flight testing of a deployable precision landing system[J]. Journal of Aircraft, 1994, 31(5):1101-1108.
[10] JANN T. Advanced features for autonomous parafoil guidance, navigation and control:AIAA-2005-16428[R]. Reston:AIAA, 2005.
[11] SOPPA U, STRAUCH R. GNC concept for automated landing of a large parafoil:AIAA-1997-1464[R]. Reston:AIAA, 1997.
[12] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005:95-104. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005:95-104 (in Chinese).
[13] SLEGERS N J,YAKIMENKO O A.Optimal control for terminal guidance of autonomous parafoils:AIAA-2009-2958[R]. Reston:AIAA, 2009.
[14] BENJAMIN S C. Adaptive control of a 10K parafoil system:AIAA-2015-2107[R]. Reston:AIAA, 2015.
[15] KAMINER I I, YAKIMENKO O A. On the development of GNC algorithm for a high-glide payload delivery system[C]//42th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2003:5438-5443.
[16] ZHU E L, SUN Q L, TAN P L, et al. Modeling of powered parafoil based on Kirchhoff motion equation[J]. Nonlinear Dynamics, 2015, 79(1):617-629.
[17] 司维超, 韩维, 史玮韦. 基于PSO算法的舰载机舰面布放调度方法研究[J]. 航空学报, 2012, 33(11):2048-2056. SI W C, HAN W, SHI W W. Research on dech-disposed scheduling method of carrier planes based on PSO algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2048-2056 (in Chinese).
[18] 李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 33(10):1809-1816. LI D, XIA L. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1809-1816 (in Chinese).
[19] 刘玲, 钟伟民, 钱锋. 改进的混沌粒子群优化算法[J]. 华东理工大学学报(自然科学版), 2010, 36(2):267-272. LIU L, ZHONG W M, QIAN F. An improve chaos-particle swarm optimization algorithm[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(2):267-272 (in Chinese).
[20] BREIVIK M, FOSSEN T I. Principles of guidance-based path following in 2D and 3D[C]//44th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2005:627-634.
[21] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[22] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2003:4989-4996.
[23] ZHANG H B, WANG J K, CHEN G Q, et al. A new hybrid control scheme for an integrated helicopter and engine system[J]. Chinese Journal of Aeronautics, 2012, 25(4):533-545.
[24] 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制[J]. 航空学报, 2012, 33(11):2121-2129. LI Z X, LI G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2121-2129 (in Chinese).
[25] 王彦雄, 祝小平, 周洲, 等. 穿越微下冲气流的飞翼布局无人机控制方法[J]. 航空学报, 2015, 36(5):1673-1683. WANG Y X, ZHU X P, ZHOU Z, et al. A control method of flying wing UAV for penetration of microburst[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1673-1683 (in Chinese).
[26] 熊菁, 秦子增, 程文科. 回收过程中高空风场的特点及描述[J]. 航天返回与遥感, 2003, 24(3):9-14. XIONG J, QIN Z Z, CHENG W K. The characteristics and description of mid-high altitude wind in recovery[J]. Spacecraft Recovery and Remote Sensing, 2003, 24(3):9-14 (in Chinese). |