刘洁1, 韩维1, 徐卫国2, 刘纯3, 袁培龙1, 陈志刚4, 彭海军5
收稿日期:
2018-12-10
修回日期:
2018-12-27
出版日期:
2019-08-15
发布日期:
2019-01-18
通讯作者:
刘洁
E-mail:liuyexiaobai@126.com
LIU Jie1, HAN Wei1, XU Weiguo2, LIU Chun3, YUAN Peilong1, CHEN Zhigang4, PENG Haijun5
Received:
2018-12-10
Revised:
2018-12-27
Online:
2019-08-15
Published:
2019-01-18
摘要: 针对单机滑行、无杆牵引系统以及有杆牵引系统的轨迹跟踪问题进行了研究。首先,将这3种系统的轨迹跟踪问题转化为最优控制问题,并建立了连续非线性舰载机系统的轨迹跟踪模型。然后,基于第3类生成函数,提出了适用范围更广的全状态保辛伪谱算法,并结合滚动时域理论提出了基于滚动时域(RHC)的在线跟踪最优控制方法,证明了所提算法是一种保辛算法。基于所提出的在线跟踪算法,对单机滑行、无杆牵引系统、有杆牵引系统在存在初始偏差和持续外界扰动情况下的轨迹跟踪问题分别进行了研究,并与BackwardSweep方法进行对比分析,结果表明本文所提出的跟踪算法可以有效地解决具有控制约束和状态约束的轨迹跟踪问题,并可以更高的跟踪精度和计算效率对标准轨迹进行跟踪,可完全满足实时跟踪的要求。最后,分别从初始偏差和持续外界扰动的角度研究了这3种不同方式的跟踪特性。
中图分类号:
刘洁, 韩维, 徐卫国, 刘纯, 袁培龙, 陈志刚, 彭海军. 基于滚动时域的舰载机甲板运动轨迹跟踪最优控制[J]. 航空学报, 2019, 40(8): 322842-322842.
LIU Jie, HAN Wei, XU Weiguo, LIU Chun, YUAN Peilong, CHEN Zhigang, PENG Haijun. Optimal path tracking control of carrier-based aircraft on the deck based on RHC[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 322842-322842.
[44] | BIN L, YONGSHENG D, KUANGRONG H, et al. Research on mobile robot path tracking based on color vision[C]//Chinese Automation Congress. Piscataway, NJ:IEEE Press, 2015:371-375. |
[19] | YANG J M, KIM J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots[J]. IEEE Transactions on Robotics & Automation 1999, 15(3):578-587. |
[45] | SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48. |
[1] | HUANG D, ZHAI J. Trajectory tracking control of wheeled mobile robots based on disturbance observer[C]//2015 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE Press, 2015:1761-1765. |
[20] | JIN Y Q, LIU X D, QIU W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4):68-76. |
[21] | 丛炳龙,刘向东,陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013, 34(3):620-628. CONG B L, LIU X D, CHEN Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):620-628(in Chinese). |
[46] | JIANG P, UNBEHAUEN R. Iterative learning neural network control for nonlinear system trajectory tracking[J]. Neurocomputing, 2002, 48(1):141-153. |
[2] | ZDEŠAR A, ŠKRJANC I, KLANČAR G. Visual trajectory-tracking model-based control for mobile robots[J]. International Journal of Advanced Robotic Systems, 2013, 10(9):323. |
[22] | OUYANG P R, ACOB J, PANO V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(2):189-200. |
[47] | MORENO-VALENZUELA J, AGUILAR-AVELAR C, PUGA-GUZMÁN S A, et al. Adaptive neural network control for the trajectory tracking of the furuta pendulum[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3439. |
[48] | 刘芳,王洪娟,黄光伟,等.基于自适应深度网络的无人机目标跟踪算法[J].航空学报, 2019, 40(4):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322332(in Chinese). |
[23] | BOUKATTAYA M, MEZGHANI N, DAMAK T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J]. ISA Transactions, 2018, 77:1-19. |
[3] | LEE S M, KIM H, LEE S, et al. Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots[J]. Advances in Robotics Research, 2014, 1(1):41-59. |
[49] | GAO M, SONG A G. Design of intelligent controller for mobile robot based on fuzzy logic[J]. Journal of Southeast University(English Edition), 2010, 26(1):62-67. |
[24] | AJJANAROMVAT N, PARNICHKUN M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation[J]. Mechatronics, 2018, 51:85-96. |
[50] | AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):1-30. |
[4] | SOSA-CERVANTES C Y, SILVA-ORTIGOZA R, MARQUEZ-SANCHEZ C, et al. Trajectory tracking task in wheeled mobile robots:A Review[C]//2014 International Conference on Mechatronics, Electronics and Automotive Engineering. Piscataway, NJ:IEEE Press, 2014:110-115. |
[25] | SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh, PA:Robotics Institute. Tech. Rep. CMU-RITR-09-08,2009. |
[5] | THOMAS H, RINGDAHL O. Follow the past-a path tracking algorithm for autonomous forest vehicles[J]. International Journal of Vehicle Autonomous Systems, 2006, 4(2/3/4):216. |
[51] | SORNIOTTI A, BARBER P, PINTO S D. Path tracking for automated driving:A tutorial on control system formulations and ongoing research[M].Automated Driving. Cham:Springer, 2017:71-140. |
[26] | TAGNE G, TALJ R, CHARARA A. Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):796-809. |
[6] | FLETCHER L, TELLER S, OLSON E, et al. The DARPA urban challenge:Autonomous vehicles in city traffic[M]. Berlin:Springer Publishing Company, 2009. |
[52] | RUPP A, STOLZ M. Survey on control schemes for automated driving on highways[M].Automated Driving. Cham:Springer, 2017:13-69. |
[7] | SEBASTIAN T, MIKE M, HENDRIK D, et al. Stanley:The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9):661-692. |
[27] | FALCONE P, TUFO M, BORRELLI F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems[C]//200746th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2007:2980-2985. |
[53] | KHALAJI A K, MOOSAVIAN S A A. Robust adaptive controller for a tractor-trailer mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):943-953. |
[28] | BORRELLI F, FALCONE P, KEVICZKY T, et al. MPC-based approach to active steering for autonomous vehicle systems[J]. International Journal of Vehicle Autonomous Systems, 2005, 3(2/3/4):265. |
[8] | HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving:Controller Design, Experimental Validation and Racing[C]//2007 American Control Conference. Piscataway, NJ:IEEE Press, 2007:2296-2301. |
[9] | 李林琛,蒋小平. 基于PID控制的移动机器人路径跟踪[J]. 激光杂志, 2016, 37(2):110-112. LI L C, JIANG X P. Path tracking of mobile robot based on PID control[J]. Laser Journal, 2016, 37(2):110-112(in Chinese). |
[10] | 冯剑,张文安,倪洪杰,等. 轮式移动机器人轨迹跟踪的PID控制方法[J]. 信息与控制, 2017,46(4):385-393. FENG J, ZHANG W A, NI H J, et al. Trajectory tracking control of wheeled mobile robots using PID control method[J]. Information & Control, 2017, 46(4):385-393(in Chinese). |
[29] | FALCONE P, BORRELLI F, ASGARI J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3):566-580. |
[54] | YUE M, HOU X, GAO R, et al. Trajectory tracking control for tractor-trailer vehicles:A coordinated control approach[J]. Nonlinear Dynamics, 2017(3):1061-1074. |
[55] | 周火凤,马保离,宋丽辉,等. 离轴式带拖车移动机器人的路径跟踪控制[J]. 自动化学报, 2010, 36(9):1272-1278. ZHOU H F, MA B L, SONG L H, et al. Path following control of tractor-trailers with off-axle hitching[J]. Acta Automatica Sinica, 2010, 36(9):1272-1278(in Chinese). |
[11] | PAN Y, LI X, YU H. Efficient PID tracking control of robotic manipulators driven by compliant actuators[J]. IEEE Transactions on Control Systems Technology, 2018,27(2):915-922. |
[56] | KAYACAN E, RAMON H, SAEYS W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):806-814. |
[30] | KÜHNE F, FETTER W, JOÃO L, et al. Model predictive control of a mobile robot using linearization[C]//Proceedings of Mechatronics & Robotics, 2004:525-530. |
[12] | ZHU R, SUN D, ZHOU Z. Integrated design of trajectory planning and control for micro air vehicles[J]. Mechatronics, 2007, 17(4):245-253. |
[57] | PAZDERSKI D, KOZLOWSKI K. Control of a unicycle-like robot with three on-axle trailers using transverse function approach[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2012, 60(3):557-579. |
[31] | BAHADORIAN M, EATON R, HESKETH T, et al. Robust time-varying model predictive control with application to mobile robot unmanned path tracking[J]. IFAC Proceedings Volumes, 2014, 47(3):4849-4854. |
[13] | NORMEY-RICO J E, ISMAEL A, JUAN G O, et al. Mobile robot path tracking using a robust PID controller[J]. Control Engineering Practice, 2001, 9(11):1209-1214. |
[58] | MATSUSHITA K, MURAKAMI T. Nonholonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):280-287. |
[14] | ROSSOMANDO F G, SORIA C, CARELLI R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots[J]. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):931-944. |
[59] | KAYACAN E, KAYACAN E, RAMON H, et al. Learning in centralized nonlinear model predictive control:Application to an autonomous tractor-trailer system[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1):197-205. |
[32] | BAHADORIAN M, SAVKOVIC B, EATON R, et al. Robust model predictive control for automated trajectory tracking of an unmanned ground vehicle[C]//2012 American Control Conference. Piscataway,NJ:IEEE Press, 2012:4251-4256. |
[15] | MATRAJI I, AL-DURRA A, HARYONO A, et al. Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control[J]. Control Engineering Practice, 2018, 72:167-176. |
[60] | YUAN J, SUN F, HUANG Y. Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7665-7677. |
[33] | GUTJAHR B, GRÖLL L, WERLING M. Lateral vehicle trajectory optimization using constrained linear time-varying MPC[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6):1586-1595. |
[61] | ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths:A Lyapunov-based approach[J]. IEEE Transactions on Robotics & Automation, 2004, 20(1):154-160. |
[62] | 苑晶,黄亚楼,孙凤池. 带拖车移动机器人全局路径跟踪控制[J]. 控制与决策, 2007, 22(10):1119-1124. YUAN J, HUANG Y L, SUN F C. Global path following control of tractor-trailer mobile robot[J]. Control & Decision, 2007, 22(10):1119-1124(in Chinese). |
[34] | PLESSEN M, BEMPORAD A. Reference trajectory planning under constraints and path tracking using linear time-varying model predictive control for agricultural machines[J]. Biosystems Engineering, 2017, 153:28-41. |
[16] | MUÑOZ F, ESPINOZA E S, GONZÁLEZ-HERNÁNDEZ I, et al. Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller[J]. Journal of Intelligent & Robotic Systems, 2018(1):1-18. |
[63] | JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5):1624-1635. |
[35] | LI Z J, DENG J, LU R Q, et al. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 46(6):740-749. |
[17] | ASIF M, MEMON A Y, KHAN M J. Output feedback control for trajectory tracking of wheeled mobile robot[J]. Intelligent Automation & Soft Computing,2015, 22(1):75-87. |
[64] | KARKEE M, STEWARD B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system[J]. Journal of Terramechanics, 2010, 47(6):379-393. |
[18] | ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2):1079-1091. |
[36] | ALI Z A, WANG D, SAFWAN M, et al. Trajectory tracking of a nonholonomic wheeleed mobile robot using hybrid controller[J]. International Journal of Modeling & Optimization, 2016, 6(3):136-141. |
[37] | 张万枝,白文静,吕钊钦,等. 线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度[J]. 农业工程学报, 2017(13):112-119. ZHANG W Z, BAI W J, LYU Z Q, et al. Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017(13):112-119(in Chinese). |
[65] | LIU J, HAN W, LIU C, et al. A new method for the optimal control problem of path planning for unmanned ground systems[J]. IEEE Access, 2018, 6:33251-33260. |
[19] | YANG J M, KIM J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots[J]. IEEE Transactions on Robotics & Automation 1999, 15(3):578-587. |
[38] | HAN Y Q, YAN H S. Adaptive multi-dimensional Taylor network tracking control for SISO uncertain stochastic non-linear systems[J]. IET Control Theory & Applications, 2018, 12(8):1107-1115. |
[66] | LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6:65429-65438. |
[20] | JIN Y Q, LIU X D, QIU W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4):68-76. |
[21] | 丛炳龙,刘向东,陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013, 34(3):620-628. CONG B L, LIU X D, CHEN Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):620-628(in Chinese). |
[39] | OSTAFEW C J, SCHOELLIG A P, BARFOOT T D, et al. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking[J]. Journal of Field Robotics, 2015, 33(1):133-152. |
[40] | 刘昌鑫,高剑,徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017(11):19-23. LIU C X, GAO J, XU D M. A model predictive path following control method for underactuated autonomous underwater vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2017(11):19-23(in Chinese). |
[67] | ARNOLD V I. Mathematical methods of classical mechanics[J]. Advances in Mathematics, 1983, 49(1):106. |
[22] | OUYANG P R, ACOB J, PANO V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(2):189-200. |
[41] | YANG Y, LIN X, MIAO Z, et al. Predictive control strategy based on extreme learning machine for path-tracking of autonomous mobile robot[J]. Intelligent Automation & Soft Computing, 2015, 21(1):1-19. |
[23] | BOUKATTAYA M, MEZGHANI N, DAMAK T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J]. ISA Transactions, 2018, 77:1-19. |
[68] | HAIRER E, LUBICH C, WANNER G. Geometric numerical integration:Structure-preserving algorithm for ordinary differential equations[M]. New York:Springer, 2006. |
[24] | AJJANAROMVAT N, PARNICHKUN M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation[J]. Mechatronics, 2018, 51:85-96. |
[42] | CARVALHO A, GAO Y, GRAY A, et al. Predictive control of an autonomous ground vehicle using an iterative linearization approach[C]//16th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2013:2335-2340. |
[43] | FUKAO T. Inverse optimal tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics & Automation, 2000, 16(5):609-615. |
[25] | SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh, PA:Robotics Institute. Tech. Rep. CMU-RITR-09-08,2009. |
[26] | TAGNE G, TALJ R, CHARARA A. Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):796-809. |
[44] | BIN L, YONGSHENG D, KUANGRONG H, et al. Research on mobile robot path tracking based on color vision[C]//Chinese Automation Congress. Piscataway, NJ:IEEE Press, 2015:371-375. |
[45] | SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48. |
[27] | FALCONE P, TUFO M, BORRELLI F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems[C]//200746th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2007:2980-2985. |
[46] | JIANG P, UNBEHAUEN R. Iterative learning neural network control for nonlinear system trajectory tracking[J]. Neurocomputing, 2002, 48(1):141-153. |
[28] | BORRELLI F, FALCONE P, KEVICZKY T, et al. MPC-based approach to active steering for autonomous vehicle systems[J]. International Journal of Vehicle Autonomous Systems, 2005, 3(2/3/4):265. |
[47] | MORENO-VALENZUELA J, AGUILAR-AVELAR C, PUGA-GUZMÁN S A, et al. Adaptive neural network control for the trajectory tracking of the furuta pendulum[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3439. |
[48] | 刘芳,王洪娟,黄光伟,等.基于自适应深度网络的无人机目标跟踪算法[J].航空学报, 2019, 40(4):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322332(in Chinese). |
[29] | FALCONE P, BORRELLI F, ASGARI J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3):566-580. |
[49] | GAO M, SONG A G. Design of intelligent controller for mobile robot based on fuzzy logic[J]. Journal of Southeast University(English Edition), 2010, 26(1):62-67. |
[50] | AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):1-30. |
[30] | KÜHNE F, FETTER W, JOÃO L, et al. Model predictive control of a mobile robot using linearization[C]//Proceedings of Mechatronics & Robotics, 2004:525-530. |
[31] | BAHADORIAN M, EATON R, HESKETH T, et al. Robust time-varying model predictive control with application to mobile robot unmanned path tracking[J]. IFAC Proceedings Volumes, 2014, 47(3):4849-4854. |
[51] | SORNIOTTI A, BARBER P, PINTO S D. Path tracking for automated driving:A tutorial on control system formulations and ongoing research[M].Automated Driving. Cham:Springer, 2017:71-140. |
[32] | BAHADORIAN M, SAVKOVIC B, EATON R, et al. Robust model predictive control for automated trajectory tracking of an unmanned ground vehicle[C]//2012 American Control Conference. Piscataway,NJ:IEEE Press, 2012:4251-4256. |
[52] | RUPP A, STOLZ M. Survey on control schemes for automated driving on highways[M].Automated Driving. Cham:Springer, 2017:13-69. |
[33] | GUTJAHR B, GRÖLL L, WERLING M. Lateral vehicle trajectory optimization using constrained linear time-varying MPC[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6):1586-1595. |
[53] | KHALAJI A K, MOOSAVIAN S A A. Robust adaptive controller for a tractor-trailer mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):943-953. |
[34] | PLESSEN M, BEMPORAD A. Reference trajectory planning under constraints and path tracking using linear time-varying model predictive control for agricultural machines[J]. Biosystems Engineering, 2017, 153:28-41. |
[35] | LI Z J, DENG J, LU R Q, et al. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 46(6):740-749. |
[54] | YUE M, HOU X, GAO R, et al. Trajectory tracking control for tractor-trailer vehicles:A coordinated control approach[J]. Nonlinear Dynamics, 2017(3):1061-1074. |
[55] | 周火凤,马保离,宋丽辉,等. 离轴式带拖车移动机器人的路径跟踪控制[J]. 自动化学报, 2010, 36(9):1272-1278. ZHOU H F, MA B L, SONG L H, et al. Path following control of tractor-trailers with off-axle hitching[J]. Acta Automatica Sinica, 2010, 36(9):1272-1278(in Chinese). |
[36] | ALI Z A, WANG D, SAFWAN M, et al. Trajectory tracking of a nonholonomic wheeleed mobile robot using hybrid controller[J]. International Journal of Modeling & Optimization, 2016, 6(3):136-141. |
[56] | KAYACAN E, RAMON H, SAEYS W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):806-814. |
[37] | 张万枝,白文静,吕钊钦,等. 线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度[J]. 农业工程学报, 2017(13):112-119. ZHANG W Z, BAI W J, LYU Z Q, et al. Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017(13):112-119(in Chinese). |
[38] | HAN Y Q, YAN H S. Adaptive multi-dimensional Taylor network tracking control for SISO uncertain stochastic non-linear systems[J]. IET Control Theory & Applications, 2018, 12(8):1107-1115. |
[57] | PAZDERSKI D, KOZLOWSKI K. Control of a unicycle-like robot with three on-axle trailers using transverse function approach[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2012, 60(3):557-579. |
[39] | OSTAFEW C J, SCHOELLIG A P, BARFOOT T D, et al. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking[J]. Journal of Field Robotics, 2015, 33(1):133-152. |
[58] | MATSUSHITA K, MURAKAMI T. Nonholonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):280-287. |
[40] | 刘昌鑫,高剑,徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017(11):19-23. LIU C X, GAO J, XU D M. A model predictive path following control method for underactuated autonomous underwater vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2017(11):19-23(in Chinese). |
[59] | KAYACAN E, KAYACAN E, RAMON H, et al. Learning in centralized nonlinear model predictive control:Application to an autonomous tractor-trailer system[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1):197-205. |
[41] | YANG Y, LIN X, MIAO Z, et al. Predictive control strategy based on extreme learning machine for path-tracking of autonomous mobile robot[J]. Intelligent Automation & Soft Computing, 2015, 21(1):1-19. |
[60] | YUAN J, SUN F, HUANG Y. Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7665-7677. |
[42] | CARVALHO A, GAO Y, GRAY A, et al. Predictive control of an autonomous ground vehicle using an iterative linearization approach[C]//16th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2013:2335-2340. |
[61] | ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths:A Lyapunov-based approach[J]. IEEE Transactions on Robotics & Automation, 2004, 20(1):154-160. |
[62] | 苑晶,黄亚楼,孙凤池. 带拖车移动机器人全局路径跟踪控制[J]. 控制与决策, 2007, 22(10):1119-1124. YUAN J, HUANG Y L, SUN F C. Global path following control of tractor-trailer mobile robot[J]. Control & Decision, 2007, 22(10):1119-1124(in Chinese). |
[43] | FUKAO T. Inverse optimal tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics & Automation, 2000, 16(5):609-615. |
[63] | JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5):1624-1635. |
[64] | KARKEE M, STEWARD B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system[J]. Journal of Terramechanics, 2010, 47(6):379-393. |
[44] | BIN L, YONGSHENG D, KUANGRONG H, et al. Research on mobile robot path tracking based on color vision[C]//Chinese Automation Congress. Piscataway, NJ:IEEE Press, 2015:371-375. |
[65] | LIU J, HAN W, LIU C, et al. A new method for the optimal control problem of path planning for unmanned ground systems[J]. IEEE Access, 2018, 6:33251-33260. |
[45] | SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48. |
[66] | LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6:65429-65438. |
[46] | JIANG P, UNBEHAUEN R. Iterative learning neural network control for nonlinear system trajectory tracking[J]. Neurocomputing, 2002, 48(1):141-153. |
[67] | ARNOLD V I. Mathematical methods of classical mechanics[J]. Advances in Mathematics, 1983, 49(1):106. |
[47] | MORENO-VALENZUELA J, AGUILAR-AVELAR C, PUGA-GUZMÁN S A, et al. Adaptive neural network control for the trajectory tracking of the furuta pendulum[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3439. |
[48] | 刘芳,王洪娟,黄光伟,等.基于自适应深度网络的无人机目标跟踪算法[J].航空学报, 2019, 40(4):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322332(in Chinese). |
[49] | GAO M, SONG A G. Design of intelligent controller for mobile robot based on fuzzy logic[J]. Journal of Southeast University(English Edition), 2010, 26(1):62-67. |
[68] | HAIRER E, LUBICH C, WANNER G. Geometric numerical integration:Structure-preserving algorithm for ordinary differential equations[M]. New York:Springer, 2006. |
[50] | AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):1-30. |
[51] | SORNIOTTI A, BARBER P, PINTO S D. Path tracking for automated driving:A tutorial on control system formulations and ongoing research[M].Automated Driving. Cham:Springer, 2017:71-140. |
[52] | RUPP A, STOLZ M. Survey on control schemes for automated driving on highways[M].Automated Driving. Cham:Springer, 2017:13-69. |
[53] | KHALAJI A K, MOOSAVIAN S A A. Robust adaptive controller for a tractor-trailer mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):943-953. |
[54] | YUE M, HOU X, GAO R, et al. Trajectory tracking control for tractor-trailer vehicles:A coordinated control approach[J]. Nonlinear Dynamics, 2017(3):1061-1074. |
[55] | 周火凤,马保离,宋丽辉,等. 离轴式带拖车移动机器人的路径跟踪控制[J]. 自动化学报, 2010, 36(9):1272-1278. ZHOU H F, MA B L, SONG L H, et al. Path following control of tractor-trailers with off-axle hitching[J]. Acta Automatica Sinica, 2010, 36(9):1272-1278(in Chinese). |
[56] | KAYACAN E, RAMON H, SAEYS W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):806-814. |
[57] | PAZDERSKI D, KOZLOWSKI K. Control of a unicycle-like robot with three on-axle trailers using transverse function approach[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2012, 60(3):557-579. |
[58] | MATSUSHITA K, MURAKAMI T. Nonholonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):280-287. |
[59] | KAYACAN E, KAYACAN E, RAMON H, et al. Learning in centralized nonlinear model predictive control:Application to an autonomous tractor-trailer system[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1):197-205. |
[60] | YUAN J, SUN F, HUANG Y. Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7665-7677. |
[61] | ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths:A Lyapunov-based approach[J]. IEEE Transactions on Robotics & Automation, 2004, 20(1):154-160. |
[62] | 苑晶,黄亚楼,孙凤池. 带拖车移动机器人全局路径跟踪控制[J]. 控制与决策, 2007, 22(10):1119-1124. YUAN J, HUANG Y L, SUN F C. Global path following control of tractor-trailer mobile robot[J]. Control & Decision, 2007, 22(10):1119-1124(in Chinese). |
[63] | JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5):1624-1635. |
[64] | KARKEE M, STEWARD B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system[J]. Journal of Terramechanics, 2010, 47(6):379-393. |
[65] | LIU J, HAN W, LIU C, et al. A new method for the optimal control problem of path planning for unmanned ground systems[J]. IEEE Access, 2018, 6:33251-33260. |
[66] | LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6:65429-65438. |
[67] | ARNOLD V I. Mathematical methods of classical mechanics[J]. Advances in Mathematics, 1983, 49(1):106. |
[68] | HAIRER E, LUBICH C, WANNER G. Geometric numerical integration:Structure-preserving algorithm for ordinary differential equations[M]. New York:Springer, 2006. |
[1] | 杨加秀, 李新凯, 张宏立, 王昊. 切换拓扑下异构集群的强化学习时变编队控制[J]. 航空学报, 2024, 45(10): 329166-329166. |
[2] | 刘晓雨, 孙立国, 谭文倩, 魏金鹏, 王维军, 焦俊凯. 基于相似构型决策的舰载机驾驶员建模与评估[J]. 航空学报, 2023, 44(4): 126329-126329. |
[3] | 张少辉, 刘舜, 李亚飞, 金钊, 靳远远, 王少参, 赵建波, 徐明亮. 航空母舰舰载机弹药保障作业调度优化算法[J]. 航空学报, 2023, 44(20): 228485-228485. |
[4] | 张迁, 杨垣鑫, 唐硕, 岳向航, 许志. 火星固体上升器最优推力条件及制导方法[J]. 航空学报, 2023, 44(17): 328155-328155. |
[5] | 万兵, 苏析超, 郭放, 韩维, 梁勇. 不确定性工时下甲板作业的前摄性鲁棒调度[J]. 航空学报, 2022, 43(12): 325971-325971. |
[6] | 颜黎明, 郭鑫, 赵冬冬. 基于新型权重解析法的永磁电机预测转矩控制[J]. 航空学报, 2022, 43(12): 327785-327785. |
[7] | 王霄, 程健慧, 沈天荣, 许保成, 孟轩. 舰面飞机尾喷流对进气道温度场影响的仿真分析[J]. 航空学报, 2021, 42(8): 525795-525795. |
[8] | 陈跃良, 陈亮, 卞贵学, 杨翔宁, 管宇, 张勇, 何刚. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021, 42(8): 525786-525786. |
[9] | 刘东, 吴家仁, 周一舟, 刘振祥, 李瑜, 王铭泽. 舰载机综合保障技术实践及发展展望[J]. 航空学报, 2021, 42(8): 525802-525802. |
[10] | 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 525859-525859. |
[11] | 王永庆, 于浩, 施岩. 舰载机滑跃起飞动力学与运动学特性[J]. 航空学报, 2021, 42(8): 525853-525853. |
[12] | 王少博, 郭杨, 王仕成, 刘志国, 张帅. 带有引诱角色的多飞行器协同最优制导方法[J]. 航空学报, 2020, 41(2): 323402-323402. |
[13] | 陈奇, 赵敏, 李宇辉, 何紫阳. 基于梯度下降法的翼伞系统最优分段航迹规划[J]. 航空学报, 2020, 41(12): 324226-324226. |
[14] | 彭坤, 彭睿, 黄震, 张柏楠. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40(7): 322641-322641. |
[15] | 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7): 222793-222793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学