[1] BRUYNEEL M, ZEIN S. A modified fast marching method for defining fiber placement trajectories over meshes[J]. Computers and Structures, 2013, 125:45-52.
[2] 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2):434-441. XIONG W L, XIAO J, WANG X F, et al. Algorithm of adaptive path planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):434-441(in Chinese).
[3] CHEN J H, CHEN-KEAT T, HOJJATI M, et al. Impact of layup rate on the quality of fiber steering/cut-restart in automated fiber placement processes[J]. Science and Engineering of Composite Materials, 2015, 22(2):165-173.
[4] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放的预浸料动态粘性实验研究[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese).
[5] WANG Z B, HAN Z Y, LU H, et al. A review of tensioner for automated fiber placement[J]. Advanced Materials Research, 2013, 740:183-187.
[6] 文立伟, 李俊斐, 王显峰, 等. 基于结构设计的自调节铺放轨迹规划算法[J]. 航空学报, 2013, 34(7):1731-1739. WEN L W, LI J F, WANG X F, et al. Adjustment algorithm based on structural design for automated tape laying and automated fiber placement[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1731-1739(in Chinese).
[7] 赵新明, 段玉岗, 刘潇龙, 等. 低能电子束原位固化树脂基复合材料纤维铺放制造及性能[J]. 机械工程学报, 2013, 49(11):121-127. ZHAO X M, DUAN Y G, LIU X L, et al. Fabrication and properties of polymer matrix composites by low-energy electron beam in-situ cured fiber placement process[J]. Journal of Mechanical Engineering, 2013, 49(11):121-127(in Chinese).
[8] 方宜武, 王显峰, 顾善群, 等. 自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程, 2015, 43(4):47-52. FANG Y W, WANG X F, GU S Q, et al. Lateral bending of prepreg during automated fiber placement[J]. Journal of Materials Engineering, 2015, 43(4):47-52(in Chinese).
[9] GEORGE M. Automating aerospace composites production with fiber placement[J]. Reinforced Plastics, 2011, 55(3):32-37.
[10] 段玉岗, 董肖伟, 葛衍明, 等. 基于CATIA生成数控加工路径的机器人纤维铺放轨迹规划[J]. 航空学报, 2014, 35(9):2632-2640. DUAN Y G, DONG X W, GE Y M, et al. Robotic fiber placement trajectory planning based on CATIA CNC machining path[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2632-2640(in Chinese).
[11] SCHMIDT C, SCHULTZ C, WEBER P, et al. Evaluation of eddy current testing for quality assurance and process monitoring of automated fiber placement[J]. Composites Part B:Engineering, 2014, 56(17):109-116.
[12] HASENJAEGER B. Programming and simulating automated fiber placement (AFP) CNC machines[J]. SAMPE Journal, 2013, 49(6):7-13.
[13] CHEN J, XU W J, WANG B, et al. Fuzzy-adaptive PID based tow tension controller for robotic automated fiber placement[J]. Applied Mechanics and Materials, 2014, 643:48-53.
[14] 文立伟, 宋清华, 秦丽华, 等. 基于机器视觉与UMAC的自动铺丝成型构件缺陷检测闭环控制系统[J]. 航空学报, 2015, 36(12):3991-4000. WEN L W, SONG Q H, QIN L H, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3991-4000(in Chinese).
[15] HAMID T. Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming:A Lyapunov-based approach[J]. Robotics and Autonomous Systems, 2014, 62(6):766-781.
[16] AN H H, CLEMENT W I, REED B. Analytical inverse kinematic solution with self-motion constraint for the 7-DOF restore robot arm[C]//2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Besancon:AIM, 2014:1325-1330.
[17] GE X F, ZHAO D B, LU Y H, et al. Study of dynamics performance index of the automated fiber placement robotic manipulator[J]. Journal of Information and Computational Science, 2011, 8(14):2975-2982.
[18] PIERRE D, HELENE C, EMMANUEL D. Tool path smoothing of a redundant machine:application to automated fiber placement[J]. Computer-Aided Design, 2011, 43:122-132.
[19] KYLE A J. Enhanced robotic automated fiber placement with accurate robot technology and modular fiber placement head[J]. Psychology of Addictive Behaviors, 2013, 6(2):774-779.
[20] LONG Y, ZEZHONG C C, YAOYAO S, et al. An accurate approach to roller path generation for robotic fiber placement of free-form surface composites[J]. Robotics and Computer Integrated Manufacturing, 2014, 30(3):277-286.
[21] 邵忠喜, 富宏亚, 韩振宇. 纤维铺放设备机械手臂末端运动轨迹的后置处理技术研究[J]. 宇航学报, 2008, 29(6):2023-2029. SHAO Z X, FU H Y, HAN Z Y. Post processing technology for fiber placement machine of manipulator terminal motion trajectory[J]. Journal of Astronautics, 2008, 29(6):2023-2029(in Chinese).
[22] 葛新锋, 赵东标. 7自由度自动铺丝机器人参数化的自运动流形[J]. 机械工程学报, 2012, 48(13):27-31. GE X F, ZHAO D B. Parameterized self-motion manifold of 7-DOF automatic fiber placement robotic manipulator[J]. Journal of Mechanical Engineering, 2012, 48(13):27-31(in Chinese).
[23] TISIUS M, PRYOR M, KAPOOR C, et al. An empirical approach to performance criteria for manipulation[J]. Journal of Mechanisms and Robotics, 2009, 1(3):1-12.
[24] WEI Y H, JIAN S Q, HE S, et al. General approach for inverse kinematics of nR robots[J]. Mechanism and Machine Theory, 2014, 75:97-106.
[25] GALICKI M. Inverse-free control of a robotic manipulator in a task space[J]. Robotics and Autonomous Systems, 2014, 62(2):131-141.
[26] IQBAL H, AIZED T. Workspace analysis and optimization of 4-links of an 8-DOF haptic master device[J]. Robotics and Autonomous Systems, 2014, 62(8):1220-1227.
[27] MOLL M, KAVRAKI L E. Path planning for minimal energy curves of constant length[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2004(3):2826-2831.
[28] BURDICK J W. On the inverse kinematics of redundant manipulators:Characterization of the self-motion mani-folds[C]//Proceedings of the 1989 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 1989:264-270.
[29] HSIA T C, GUO Z Y. New inverse kinematics algorithms for redundant robot[J]. Journal of Robotic Systems, 1991, 8(1):117-132.
[30] GUO Z Y, HSIA T C. Joint trajectory generation for redundant robotics in an environment with obstacles[J]. Journal of Robotic Systems, 1993, 10(2):199-215.
[31] 赵建文, 杜志江, 孙立宁. 7自由度冗余手臂自运动流形[J]. 机械工程学报, 2007, 43(9):132-137. ZHAO J W, DU Z J, SUN L N. Self-motion manifolds of a 7-DOF redundant manipulator[J]. Journal of Mechanical Engineering, 2007, 43(9):132-137(in Chinese).
[32] 戴建生. 机构学与旋量理论的历史渊源以及有限位移旋量的发展[J]. 机械工程学报, 2015, 51(13):13-26. DAI J S. Historical relation between mechanisms and screw theory and the development of finite displacement screws[J]. Journal of Mechanical Engineering, 2015, 51(13):13-26(in Chinese).
[33] ZHENG F Y, HUA L, HAN X H. The mathematical model and mechanical properties of variable center distance gears based on screw theory[J]. Mechanism and Machine Theory, 2016, 101:116-139.
[34] IBRAHIM K, RAMADAN A, FANNI M, et al. Development of a new 4-DOF endoscopic parallel manipulator based on screw theory for laparoscopic surgery[J]. Mechatronics, 2015, 28:4-17.
[35] DAI J S. Screw algebra and lie groups and lie algebras[M]. Beijing:Higher Education Press, 2014:119-149. |