[1] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[2] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7):727-750.
[3] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program:AIAA-2003-0925[R]. Reston:AIAA, 2003.
[4] GREEN B E, OTT J D. FA-18C to E wing morphing study for the abrupt-wing-stall program[J]. Journal of Aircraft, 2005, 42(3):617-626.
[5] OWENS D B, CAPONE F J, HALL R M, et al. Free-to-roll analysis of abrupt wing stall on military aircraft at transonic speeds:AIAA-2003-0750[R]. Reston:AIAA, 2003.
[6] OWENS D B, CAPONE F J, HALL R M, et al. Transonic free-to-roll analysis of abrupt wing stall on military aircraft[J]. Journal of Aircraft, 2004, 41(3):474-484.
[7] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the FA-18E and F-35 configurations:AIAA-2004-5053[R]. Reston:AIAA, 2004.
[8] OWENS D B, MCCONNEL J K, BRANDON J M, et al. Transonic free-to-roll analysis of the F-35 joint strike fighter aircraft[J]. Journal of Aircraft, 2006, 43(3):608-615.
[9] MITCHELL A M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 2006, 44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C:AIAA-2003-1103[R]. Reston:AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4):32-35. SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):32-35(in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5):525-535. WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5):525-535(in Chinese).
[14] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47:299-313.
[15] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6):45-48. TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):45-48(in Chinese).
[16] 荣臻, 邓学蓥, 王兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3):20-24. RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):20-24(in Chinese).
[17] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2):417-426. HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):417-426(in Chinese).
[18] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞大攻角动态实验装置:CN101929915B[P]. 2011-11-30. SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hybrid mechanism:CN101929915B[P]. 2011-11-30(in Chinese).
[19] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[20] WEI L K, MA B F. Wing rock induced by a hemisphere-cylinder forebody[J]. Journal of Aircraft, 2014, 51(2):606-613.
[21] GRESHAM N T, WANG Z, GURSUL I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2009, 47(1):292-302.
[22] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings:AIAA-2000-4004[R]. Reston:AIAA, 2000.
[23] TAKASHI M, SHIGERU Y, YOSHIAKI N. Data-based modeling of non-slender wing rock:AIAA-2003-0738[R]. Reston:AIAA, 2003.
[24] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-218. LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[25] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7):591-597. M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation [J]. AIAA Journal, 2006,
44(5):964-972.
[10] MORTON S A, STEENMAN M B, CUMMINGS R M, et al. Des resolution issues for vertical flows on a delta wing and an F-18C, AIAA-2003-1103 [R]. Reston: AIAA, 2003.
[11] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 246-270.
[12] 孙海生. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4): 32-35.
SUN H S. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 32-35 (in Chinese).
[13] 王兵, 邓学蓥, 马宝峰, 等. 前体涡诱导机翼摇滚的人工转捩技术研究[J]. 空气动力学学报, 2010, 28(5): 525-535.
WANG B, DENG X Y, MA B F, et al. An artificial transition technique applied to wing rock induced by forebody vortex[J]. Acta Aerodynamica Sinica, 2010, 28(5): 525-535(in Chinese).
[14] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6): 45-48.
TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Me-chanics, 2011, 25(6): 45-48(in Chinese).
[15] 荣 臻, 邓学蓥, 王 兵, 等. 前体涡诱导双极限环摇滚流动特性的实验研究[J]. 实验流体力学, 2010, 24(3): 20-24.
RONG Z, DENG X Y, WANG B, et al. Experimental investigation on flow characteristics during double limit cycle oscillation induced by forebody vortex[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 20-24(in Chinese).
[16] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合体的摇滚运动特性比较研究[J]. 航空学报, 2014, 35(2): 417-426.
HAN B, XU M, LI G N, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronau-tica Et Astronautica Sinica, 2014, 35(2): 417-426(in Chinese).
[17] 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞
大攻角动态实验装置: 中国, CN101929915B[P]. 2011-11-30.
SHI Z W, LI L Y, CHENG K M, et al. Wind-tunnel high attack angle dynamic testing device based on hy-brid mechanism: China, CN101929915B[P]. 2011-11-30(in Chinese).
[18] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学航天与材料工程学院, 2012.
YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D].Changsha: College of Aerospace and Material Engineering, National University of Defense Technology, 2012(in Chinese).
[19] TAKASHI M, SHIGERU Y, YOSHIAKI N. The effect of leading-edge profile of self-induced oscillation of 45-degree delta wings, AIAA-2000-4004[R]. Reston: AIAA, 2000.
[20] TAKASHI M, SHIGERU Y,YOSHIAKI N. Data-based modeling of non-slender wing rock, AIAA- 2003-738[R]. Reston: AIAA, 2003.
[21] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2): 214-218.
LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-218(in Chinese).
[22] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle of attack stability[J]. Journal of Aircraft, 1988, 25(7): 591-597. |