[1] American Institute of Aeronautics and Astronautics. Guide for the verification and validation of computational fluid dynamics simulations, AIAA-1998-G-077[R]. Reston: AIAA, 1998.[2] American Society of Mechanical Engineers. ASME V&V 20-2008 Standard for verification and validation in computational fluid dynamics and heat transfer[S]. New York: ASME, 2008.[3] National Aeronautics and Space Administration. NASA-STD-7009 Standard for models and simulations[S]. Washington, D.C.: NASA, 2008.[4] Trucano T G, Swiler L P, Igusa T, et al. Calibration, validation, and sensitivity analysis: what's what[J]. Reliability Engineering and System Safety, 2006, 91(10-11): 1331-1357.[5] Roy C J, Oberkampf W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2131-2144.[6] Hills R G, Pilch M, Dowding K J, et al. Validation challenge workshop[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2375-2380.[7] Dowding K J, Pilch M, Hills R G. Formulation of the thermal problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2385-2389.[8] McFarland J, Mahadevan S. Multivariate significance testing and model calibration under uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2467-2479.[9] Hills R G, Dowding K J. Multivariate approach to the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2442-2456.[10] Ferson S, Oberkampf W L, Ginzburg L. Model validation and predictive capability for the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2408-2430.[11] Liu F, Bayarri M J, Berger J, et al. A Bayesian analysis of the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2457-2466.[12] Higdon D, Nakhleh C, Gattiker J, et al. A Bayesian calibration approach to the thermal problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2431-2441.[13] Zhang B Q, Chen G P, Guo Q T. Solution of model validation thermal challenge problem using a Bayesian method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1202-1209. (in Chinese) 张保强, 陈国平, 郭勤涛. 模型确认热传导挑战问题求解的贝叶斯方法[J]. 航空学报, 2011, 32(7): 1202-1209.[14] Saltelli A, Scott M. The role of sensitivity analysis in the corroboration of models and its link to model structural and parametric uncertainty[J]. Reliability Engineering and System Safety, 1997, 57: 1-4.[15] Ghosh J K, Delampady M, Samanta T. An introduction to Bayesian analysis[M]. New York: Springer, 2006: 163-185.[16] Sankararaman S, Mahadevan S. Model validation under epistemic uncertainty[J]. Reliability Engineering and System Safety, 2011, 96(9): 1132-1241.[17] Swiler L P, Giunta A A. Aleatory and epistemic uncertainty quantification for engineering applications, SAND2007-2670C[R]. Albuquerque: Sandia National Laboratories, 2007: 14-16.[18] Saltelli A, Ratto M, Tarantola S, et al. Sensitivity analysis practices: Strategies for model-based inference[J]. Reliability Engineering and System Safety, 2006, 91(10-11): 1109-1125. |