[1] Zhang L F, Xie M, Tang L C. A study of two estimation approaches for parameters of two-parameter Weibull distribution based on WPP//Proceedings of the 4th International Conference on Quality and Reliability, 2005: 377-384.[2] Wang Z T, Gou J Y. Simulation analysis of field data estimators for 2-parameter Weibull distribution//Proceedings of the 4th International Conference on Reliability Maintainability and Safety, 1999: 391-396.[3] Gebizlioglua O L, Senolua B, Kantar Y M. Comparison of certain value-at-risk estimation methods for the two-parameter Weibull loss distribution[J]. Journal of Computational and Applied Mathematics, 2011, 235(11): 3304-3314.[4] Luceo A. Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution[J]. Journal of Statistical Computation & Simulation, 2008, 78(10): 941-949.[5] Gibborns D I, Vane L C. A simulation study of estimators for the 2-parameter Weibull distribution[J]. IEEE Transactions on Reliability, 1981, 30(1): 61-66.[6] Wang Z T, He L. Simulation analysis of reliability random tail-cutting data processing method with two-parameters Weibull distribution[J]. Electronic Product Reliability and Test Environment, 1998,16(5): 8-15. (in Chinese) 王自涛, 何玲. 二参数威布尔分布情况下可靠性随机截尾数据处理方法的仿真分析[J]. 电子产品可靠性与试验环境, 1998, 16(5): 8-15.[7] Wen C J, Zhong Y N, Liu W C. Reliability analysis techniques of field data[J]. Journal of Hubei Polytechnic University, 2002, 17(4): 31-33. (in Chinese) 文昌俊, 钟毓宁, 刘文超.现场数据可靠性分析非参数方法比较[J]. 湖北工学院学报, 2002, 17(4): 31-33.[8] Ke R. Review of domestic research on censored data[J]. Statistics & Information Forum, 2008, 23(10): 77-79. (in Chinese) 柯蓉. 国内删失数据统计研究状况综述[J]. 统计与信息论坛, 2008, 23(10): 77-79.[9] Li J G, Fu Z G, Liu Y J. Test technology of high reliability aviation product[M]. Beijing: National Defense Industry Press, 2011: 1-5. (in Chinese) 李金国, 傅志国, 刘永坚. 高可靠性航空产品试验技术[M]. 北京: 国防工业出版社, 2011: 1-5.[10] Shen K F, Shen Y J, Leu L Y. Design of optimal step-tress accelerated life tests under progressive type I censoring with random removals[J]. Quality and Quantity, 2011, 45(3): 587-597.[11] Andres Christen J, Ruggeri F, Villa E. Utility based maintenance analysis using a random sign censoring model[J]. Reliability Engineering and System Safety, 2011, 96(3): 425-431.[12] Zhao Y. Data analysis of reliability[M]. Beijing: National Defense Industry Press, 2011: 20-22. (in Chinese) 赵宇. 可靠性数据分析[M]. 北京: 国防工业出版社, 2011: 20-22.[13] Dempster A P, Laird N M, Rudin D B.Maximum likelihood from incomplete data via the EM algorithm [J].Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38[14] Wang Z J, Shen A W, Guo J L. Analysis of validity with mean rank order method based on air fleet simulation model[J]. Systems Engineering and Electronics, 2013, 35(5): 1128-1132. (in Chinese) 王卓健, 沈安慰, 郭基联. 基于机群仿真模型的平均秩次法有效性分析[J]. 系统工程与电子技术, 2013, 35(5):1128-1132.[15] Wu Y G, Zhou J, Wang Z, et al. Parameter estimation of Weibull distribution using the EM algorithm based on randomly censored data[J]. Journal of Sichuan University: Natural Science Edition, 2005, 42(5): 910-913. (in Chinese) 吴耀国, 周杰, 王柱, 等. 随机删失数据下基于 EM算法的Weibull分布参数估计[J]. 四川大学学报:自然科学版, 2005, 42(5): 910-913.[16] Lai S J, Jin X X, Peng W. Research on the method to reject abnormal data in signal preprocessing[J]. Journal of Jiamusi University: Natural Science Edition, 2011, 29(3): 333-336. (in Chinese) 赖素建, 靳晓雄, 彭为. 信号预处理中错点剔除方法的研究[J]. 佳木斯大学学报: 自然科学版, 2011, 29(3): 333-336. |