[1] Song S M, Zhang B Q, Chen X L. Robust control of spacecraft attitude tracking for space fly-around mission. Systems Engineering and Electronics, 2011, 33(1): 120-126. (in Chinese) 宋申民, 张保群, 陈兴林. 空间绕飞任务中航天器姿态跟踪的鲁棒控制. 系统工程与电子技术, 2011, 33(1): 120-126.[2] Shahravi M, Kabganian M. Attitude tracking and vibration of suppression of flexible spacecraft using implicit adaptive control law. Proceedings of the 2005 American Control Conference, 2005: 913-918.[3] Boskovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22.[4] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.[5] Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances. Journal of the Fracklin Institute, 2012, 349(2): 413-440.[6] Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 963-978.[7] Zhang B T, Pi Y G, Luo Y. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Transactions, 2012, 51(5): 649-656.[8] Efe M O, Kasnakoglu C. A fractional adaptation law for sliding mode control. International Journal of Adaptive Control and Signal Processing, 2008, 22(10): 968-986.[9] Efe M O. A sufficient condition for checking the attractiveness of a sliding manifold in fractional order sliding mode control. Asian Journal of Control, 2012, 14(4): 1118-1122.[10] Dadras S, Momeni H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 367-377.[11] Chen D Y, Zhang R F, Sprott J C, et al. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Choas, 2012, 22(2): 023130(1-9).[12] Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyper chaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2): 247-261.[13] Qi D L, Yang J, Zhang J L. The stability control of fractional order unifed chaotic system with sliding mode control treory. Chinese Physics B, 2010, 19(10): 100506(1-5).[14] Podlubny I. Fractional differential equations. San Diego: Academic Press, 1999.[15] Zhang B Q, Song S M, Chen X L. Decentralized robust saturated attitude coordination control of satellites within formation. Acta Aeronautica et Astronautica Sinica, 2011, 23(9): 1644-1655. (in Chinese) 张保群, 宋申民, 陈兴林. 编队卫星分布式鲁棒饱和姿态协同控制. 航空学报, 2011, 23(9): 1644-1655.[16] Li S H, Ding S H, Li Q. Global set stabilization of the spacecraft attitude control problem based on quaternion. International Journal of Robust and Nonlinear Control, 2010, 20(1): 84-105.[17] Sun W, Li Y, Li C P, et al. Convergence speed of a fractional order consensus algorithm over undirected scale-free networks. Asian Journal of Control, 2011, 13(6): 936- 946.[18] Matignon D. Stability results for fractional differential equations with applications to control processing. Proceedings of IMACS Multiconference on Computational Engineering in Systems and Application, 1996: 963-968.[19] Tepljakov A, Petlenkov E, Belikov J. FOMCON: fractional-order modeling and control toolbox for MATLAB. Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, 2011: 684-689. |