Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (17): 231571.doi: 10.7527/S1000-6893.2025.31571
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Jie BIAN1,2(
), Siji WANG3, Feichun LIU2
Received:2024-11-25
Revised:2025-02-11
Accepted:2025-05-19
Online:2025-06-06
Published:2025-06-06
Contact:
Jie BIAN
E-mail:bianjie_hrbeu@163.com
Supported by:CLC Number:
Jie BIAN, Siji WANG, Feichun LIU. Research progress on design and experiment of squirrel-cage elastic supports in aircraft engines[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 231571.
| [1] | 谢晨醒. 鼠笼结构件扭振动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 1-2. |
| XIE C X. The research on the torsional vibration dynamics of the squirrel cage structure[D]. Harbin: Harbin Institute of Technology, 2015: 1-2 (in Chinese). | |
| [2] | 李贵林, 李晓明, 赵行明, 等. 组合弹性支承结构的设计与试验研究[J]. 燃气涡轮试验与研究, 2006, 19(3): 53-57. |
| LI G L, LI X M, ZHAO X M, et al. Study on the design and experiment of a combined elastic support[J]. Gas Turbine Experiment and Research, 2006, 19(3): 53-57 (in Chinese). | |
| [3] | 缪辉. 航空发动机转子系统动力学相似设计方法及试验验证研究[D]. 南京: 南京航空航天大学, 2020: 84-86. |
| MIAO H. Research on dynamic similarity design method and experimental verification for an aero-engine rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 84-86 (in Chinese) . | |
| [4] | 褚剑阳, 王明军, 赵志国, 等. 航空发动机鼠笼弹支轴承弹性支承内径面的工艺改进[J]. 轴承, 2024(2): 43-45. |
| CHU J Y, WANG M J, ZHAO Z G, et al. Improvement on processing technology for inner diameter surface of elastic support of squirrel-cage elastically-supported bearing for aero-engine[J]. Bearing, 2024(2): 43-45 (in Chinese). | |
| [5] | 王月华, 王建方. 折返式弹性支承结构和发动机: CN111911531A[P]. 2020-11-10. |
| WANG Y H, WANG J F. Turn-back type elastic supporting structure and engine: CN111911531A[P]. 2020-11-10 (in Chinese). | |
| [6] | 孙怀全, 孙慧广, 徐雷, 等. 一种鼠笼弹支球轴承外圈沟位置及精度的测量方法: CN105277154A[P]. 2016-01-27. |
| SUN H Q, SUN H G, XU L, et al. Measuring method for squirrel cage elastic support ball bearing outer ring groove position and precision: CN105277154A[P]. 2016-01-27 (in Chinese). | |
| [7] | 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514. |
| MAO Y Z, WANG L Q. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1508-1514 (in Chinese). | |
| [8] | 王四季, 廖明夫. 带弹支干摩擦阻尼器的转子振动控制策略和方法[J]. 航空动力学报, 2011, 26(10): 2214-2219. |
| WANG S J, LIAO M F. Control strategy and methods of rotor systems by an elastic support/dry friction damper[J]. Journal of Aerospace Power, 2011, 26(10): 2214-2219 (in Chinese). | |
| [9] | LIAO M F, LI Y, SONG M B, et al. Dynamics modeling and numerical analysis of rotor with elastic support/dry friction dampers[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(1): 69-83. |
| [10] | 宋明波, 谭大力, 廖明夫. 压电陶瓷弹性支承干摩擦阻尼器减振实验[J]. 航空动力学报, 2013, 28(10): 2223-2227. |
| SONG M B, TAN D L, LIAO M F. Experiment on vibration reduction by elastic support/dry friction damper with piezoelectric ceramic[J]. Journal of Aerospace Power, 2013, 28(10): 2223-2227 (in Chinese). | |
| [11] | 欧阳运芳. 航空发动机异型推力轴承轴向力测试方法[J]. 航空动力学报, 2020, 35(6): 1149-1156. |
| OUYANG Y F. Measurement method for axial force of aero-engine special-shaped thrust bearing[J]. Journal of Aerospace Power, 2020, 35(6): 1149-1156 (in Chinese). | |
| [12] | QIN L C, ZHANG L F, FENG J G, et al. A hybrid triboelectric-piezoelectric smart squirrel cage with self-sensing and self-powering capabilities[J]. Nano Energy, 2024, 124: 109506. |
| [13] | 卢愈, 唐振寰, 成晓鸣, 等. 高速柔性转子-非定心SFD系统响应特征分析与试验验证[J]. 振动与冲击, 2023, 42(17): 114-119, 193. |
| LU Y, TANG Z H, CHENG X M, et al. Analysis and test verification for response characteristics of high-speed flexible rotor-non centered SFD system[J]. Journal of Vibration and Shock, 2023, 42(17): 114-119, 193 (in Chinese). | |
| [14] | 唐虎标, 邓旺群, 刘文魁, 等. 某燃气发生器转子临界转速及振型分析[J]. 现代制造技术与装备, 2021, 57(2): 42-45. |
| TANG H B, DENG W Q, LIU W K, et al. Critical speed and vibration mode analysis of a gas generator rotor[J]. Modern Manufacturing Technology and Equipment, 2021, 57(2): 42-45 (in Chinese). | |
| [15] | ZHAO S N, ZHANG L F, ZHU R Z, et al. Modeling approach for flexible shaft-disk-drum rotor systems with elastic connections and supports[J]. Applied Mathematical Modelling, 2022, 106: 402-425. |
| [16] | 史善广. 某压气机转子动力特性分析及试验研究[D]. 长沙: 湖南大学, 2010: 8-13. |
| SHI S G. The rotor dynamic property analysis and test research on the compressor test rig[D]. Changsha: Hunan University, 2010: 8-13 (in Chinese) . | |
| [17] | 刘璟泽. 航空发动机整机降维建模方法与非线性振动研究[D]. 南京: 东南大学, 2022: 18-19. |
| LIU J Z. Nonlinear vibration and dimension reduction modelling method study of whole aeroengine[D]. Nanjing: Southeast University, 2022: 18-19 (in Chinese) . | |
| [18] | PAROVAY E F, FALALEEV S V. Mathematical model of “working gap-pad-elastic support” system for rotor support tilting-pad journal bearing[J]. Procedia Engineering, 2017, 176: 253-263. |
| [19] | 张发品. 磁悬浮转子系统减振阻尼器研究[D]. 南京: 南京航空航天大学, 2014: 45-46. |
| ZHANG F P. Research on vibration control damper for magnetic bearing rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 45-46 (in Chinese). | |
| [20] | 王树涵, 杨海生, 唐瑞, 等. 弹性环式挤压油膜阻尼器一体化圆柱滚子轴承保持架振动特性分析[J]. 振动与冲击, 2024, 43(5): 302-314. |
| WANG S H, YANG H S, TANG R, et al. Vibration characteristics of cage of cylindrical roller bearing integrated with elastic ring squeeze film damper[J]. Journal of Vibration and Shock, 2024, 43(5): 302-314 (in Chinese). | |
| [21] | 冯义, 邓旺群, 刘文魁, 等. 同心与非同心挤压油膜阻尼器减振特性对比试验研究[J]. 机械科学与技术, 2023, 42(6): 978-984. |
| FENG Y, DENG W Q, LIU W K, et al. Comparative experimental investigation on vibration attenuating characteristics of concentric and non-concentric squeeze film damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 978-984 (in Chinese). | |
| [22] | 洪杰, 马艳红, 张大义. 航空燃气轮机总体结构设计与动力学分析[M]. 北京: 北京航空航天大学出版社, 2014: 305-306. |
| HONG J, MA Y H, ZHANG D Y. Overall structural design and dynamic analysis of aviation gas turbine[M]. Beijing: Beihang University Press, 2014: 305-306 (in Chinese). | |
| [23] | 刘文魁, 邓旺群, 彭春雷, 等. 弹性环刚度分析方法及结构参数对刚度的影响[J]. 航空科学技术, 2019, 30(2): 60-65. |
| LIU W K, DENG W Q, PENG C L, et al. Analysis method on the stiffness of elastic ring and the effect of its structure parameters on the stiffness[J]. Aeronautical Science & Technology, 2019, 30(2): 60-65 (in Chinese). | |
| [24] | KANDHASWAMY SRINIVASAN S K, PERIAROWTHAR N. Structural design and analysis of cylindrical squirrel cage to meet stiffness, strength and high cycle fatigue life for an aero engine[C]∥Proceedings of the ASME 2017 Gas Turbine India Conference. New York: ASME, 2017. |
| [25] | 董超, 杨昌祺, 林金波, 等. 一种考虑预调同心的鼠笼弹性支撑结构设计方法: CN116050221A[P]. 2023-05-02. |
| DONG C, YANG C Q, LIN J B, et al. Design method of squirrel cage elastic supporting structure considering pre-adjustment concentricity: CN116050221A[P]. 2023-05-02 (in Chinese). | |
| [26] | 王龙凯. 端齿连接复杂变截面航发转子动力学建模及振动特性研究[D]. 长沙: 中南大学, 2022: 106-109. |
| WANG L K. Dynamic modeling and vibration characteristics research of complex variable-section aeroengine rotors with curvic couplings[D]. Changsha: Central South University, 2022: 106-109 (in Chinese). | |
| [27] | 彭京徽, 周海仑, 刁诗靖, 等. 鼠笼弹性支承应力分析与降低应力方法的研究[J]. 风机技术, 2018, 60(5): 53-58. |
| PENG J H, ZHOU H L, DIAO S J, et al. Studied on the method of stress reduction in squirrel cage[J]. Chinese Journal of Turbomachinery, 2018, 60(5): 53-58 (in Chinese). | |
| [28] | 叶瑞夺. 不平衡转子系统的动力学相似特性研究[D]. 沈阳: 东北大学, 2018: 43-47. |
| YE R D. Investigation of dynamic similitude characteristics for unbalanced rotor systems[D]. Shenyang: Northeastern University, 2018: 43-47 (in Chinese). | |
| [29] | HE Z Y, CHEN G, HAO T F, et al. An optimal filter length selection method for MED based on autocorrelation energy and genetic algorithms[J]. ISA Transactions, 2021, 109: 269-287. |
| [30] | HEGHMANNS A, BEITELSCHMIDT M. Parameter optimization of thermoelectric modules using a genetic algorithm[J]. Applied Energy, 2015, 155: 447-454. |
| [31] | DING B D, LIU J L, HUANG Z H, et al. Axial force identification of space grid structural members using particle swarm optimization method[J]. Journal of Building Engineering, 2020, 32: 101674. |
| [32] | LI F, CAI X W, GAO L. Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems[J]. Applied Soft Computing, 2019, 74: 291-305. |
| [33] | QI X B, YUAN Z H, SONG Y. An integrated cuckoo search optimizer for single and multi-objective optimization problems[J]. PeerJ Computer Science, 2021, 7: e370. |
| [34] | THANKACHAN P, FIDA A, MADHAVAN PILLAI T M. Health monitoring of steel structures using Cuckoo Search algorithm-based ANN[J]. Structures, 2024, 61: 105933. |
| [35] | AWAD N H, ALI M Z, MALLIPEDDI R, et al. An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization[J]. Information Sciences, 2018, 451: 326-347. |
| [36] | TURGUT M S, TURGUT O E. Differential evolution based global best algorithm: An efficient optimizer for solving constrained and unconstrained optimization problems[J]. SN Applied Sciences, 2020, 2(4): 600. |
| [37] | SOUBHIA A L, SERPA A L. Discrete optimization for positioning of actuators and sensors in vibration control using the simulated annealing method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(2): 101. |
| [38] | VASILE A, COROPEŢCHI I C, CONSTANTINESCU D M, et al. Simulated annealing algorithms used for microstructural design of composites[J]. Materials Today: Proceedings, 2023, 93: 680-684. |
| [39] | 蔡乾杰. 小型涡扇发动机高速柔性转子系统动力学设计及试验研究[D]. 上海: 上海交通大学, 2018: 27-47. |
| CAI Q J. Rotor dynamics design and experimental study on a high-speed rotor of a small turbofan engine[D]. Shanghai: Shanghai Jiao Tong University, 2018: 27-47 (in Chinese). | |
| [40] | 冯国全, 周柏卓. 鼠笼式弹性支承结构参数优化设计与试验[J]. 航空动力学报, 2011, 26(1): 199-203. |
| FENG G Q, ZHOU B Z. Optimization design and test investigation of squirrel cage elastic support[J]. Journal of Aerospace Power, 2011, 26(1): 199-203 (in Chinese). | |
| [41] | 唐瑞, 郭健, 罗忠, 等. 鼠笼式弹性支承结构参数分步优化设计方法[J]. 航空发动机, 2016, 42(2): 38-43. |
| TANG R, GUO J, LUO Z, et al. Optimal design method of squirrel cage elastic support by stages[J]. Aeroengine, 2016, 42(2): 38-43 (in Chinese). | |
| [42] | 李明明, 王东强, 陈坤旭, 等. 鼠笼弹性支承结构优化设计方法[J]. 科学技术与工程, 2021, 21(9): 3834-3839. |
| LI M M, WANG D Q, CHEN K X, et al. Optimal design method of squirrel cage elastic support structure[J]. Science Technology and Engineering, 2021, 21(9): 3834-3839 (in Chinese). | |
| [43] | 潘毅广. 航空发动机中介轴承试验台主轴临界转速分析[D]. 大连: 大连理工大学, 2014: 38-46. |
| PAN Y G. Spindle critical speed analysis of aero-engine intershaft bearing test bench[D]. Dalian: Dalian University of Technology, 2014: 38-46 (in Chinese). | |
| [44] | WANG D, ZHANG W H, WANG Z P, et al. Shape optimization of 3D curved slots and its application to the squirrel-cage elastic support design[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(10): 1895-1900. |
| [45] | 王丹, 张卫红, 王振培, 等. 三维曲面上槽孔形状优化方法及其在鼠笼式弹性支座设计中的应用[J]. 中国科学: 物理学 力学 天文学, 2010, 40(8): 1001-1007. |
| WANG D, ZHANG W H, WANG Z P, et al. Optimization method for slot shape on three-dimensional surfaces and its application in the design of squirrel cage elastic supports[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(8): 1001-1007 (in Chinese). | |
| [46] | 张卫红, 王丹, 王振培. 鼠笼式弹性支座及其设计方法: CN101532540[P]. 2009-09-16. |
| ZHANG W H, WANG D, WANG Z P. Squirrel cage elastic support and its design method: China. ZL2009100215591[P]. 2010-08-25 (in Chinese). | |
| [47] | 徐超, 马芳, 迟杰, 等. 鼠笼弹支轴承外圈优化设计及其性能分析[J]. 轴承, 2023(9): 39-43. |
| XU C, MA F, CHI J, et al. Optimal design and performance analysis of bearing outer rings with squirrel-cage elastic support[J]. Bearing, 2023(9): 39-43 (in Chinese). | |
| [48] | 潘为民, 侯森, 时可可, 等. 基于响应面法的弹支轴承外圈的结构优化设计与实验验证[J]. 机床与液压, 2024, 52(8): 86-91. |
| PAN W M, HOU S, SHI K K, et al. Structural optimization design and experimental verification of elastic support bearing outer ring based on response surface method[J]. Machine Tool & Hydraulics, 2024, 52(8): 86-91 (in Chinese). | |
| [49] | BABAJAMALI Z, KHABAZ M K, AGHADAVOUDI F, et al. Pareto multi-objective optimization of tandem cold rolling settings for reductions and inter stand tensions using NSGA-Ⅱ[J]. ISA Transactions, 2022, 130: 399-408. |
| [50] | ZHOU S Q, ZHANG T L, MAO Z J, et al. Multi-Objective optimization of an IGV for a large axial fan based on NSGA-Ⅱ[J]. Frontiers in Energy Research, 2023, 10: 994654. |
| [51] | YI J H, DEB S, DONG J Y, et al. An improved NSGA-Ⅲ algorithm with adaptive mutation operator for Big Data optimization problems[J]. Future Generation Computer Systems, 2018, 88: 571-585. |
| [52] | ZHANG J R, WANG S L, TANG Q H, et al. An improved NSGA-Ⅲ integrating adaptive elimination strategy to solution of many-objective optimal power flow problems[J]. Energy, 2019, 172: 945-957. |
| [53] | ZHENG N, WANG H D. A noise-resistant infill sampling criterion in surrogate-assisted multi-objective evolutionary algorithms[J]. Swarm and Evolutionary Computation, 2024, 86: 101492. |
| [54] | ESPINOSA R, JIMÉNEZ F, PALMA J. Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in regression and classification problems with time series data[J]. Information Sciences, 2023, 622: 1064-1091. |
| [55] | KOOKALANI S, CHENG B, XIANG S. Shape optimization of GFRP elastic gridshells by the weighted Lagrange ε-twin support vector machine and multi-objective particle swarm optimization algorithm considering structural weight[J]. Structures, 2021, 33: 2066-2084. |
| [56] | LI Y X, ZHANG Y, HU W. Adaptive multi-objective particle swarm optimization based on virtual Pareto front[J]. Information Sciences, 2023, 625: 206-236. |
| [57] | LI L J, LIN Q Z, MING Z. A survey of artificial immune algorithms for multi-objective optimization[J]. Neurocomputing, 2022, 489: 211-229. |
| [58] | CHAI Z Y, LI W W, LI Y L. Symmetric uncertainty based decomposition multi-objective immune algorithm for feature selection[J]. Swarm and Evolutionary Computation, 2023, 78: 101286. |
| [59] | DĘBSKI R, DREŻEWSKI R. Multi-objective ship route optimisation using estimation of distribution algorithm[J]. Applied Sciences, 2024, 14(13): 5919. |
| [60] | WANG W X, LI K S, JALIL H, et al. An improved estimation of distribution algorithm for multi-objective optimization problems with mixed-variable[J]. Neural Computing and Applications, 2022, 34(22): 19703-19721. |
| [61] | ZENG Y, CHENG Y S, LIU J. An efficient global optimization algorithm for expensive constrained black-box problems by reducing candidate infilling region[J]. Information Sciences, 2022, 609: 1641-1669. |
| [62] | HE Y W, SUN J J, SONG P, et al. Multi-objective efficient global optimization of expensive simulation-based problem in presence of simulation failures[J]. Engineering with Computers, 2022, 38(3): 2001-2026. |
| [63] | TANG H S, REN Y, KUMAR A. Optimization tool based on multi-objective adaptive surrogate modeling for surface texture design of slipper bearing in axial piston pump[J]. Alexandria Engineering Journal, 2021, 60(5): 4483-4503. |
| [64] | LEE Y H, CORMAN R E, EWOLDT R H, et al. A multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) framework using efficient sampling strategies[C]∥Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York:ASME, 2017. |
| [65] | HABIB A, SINGH H K, CHUGH T, et al. A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 1000-1014. |
| [66] | HABIB A, SINGH H K, RAY T. A multiple surrogate assisted multi/many-objective multi-fidelity evolutionary algorithm[J]. Information Sciences, 2019, 502: 537-557. |
| [67] | DE ALMEIDA TORRES FILHO R J, SEGURA R L, PAULTRE P. Polynomial response surface-based transformation function for the performance improvement of low-fidelity models for concrete gravity dams[J]. Probabilistic Engineering Mechanics, 2023, 74: 103544. |
| [68] | ZHANG X F, ZHANG J, CHENG Z Q. Application of response surface methodology to optimize the preparation of rubber foam composite as sound-absorbing material using scrap rubber powder[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2019, 34(6): 1376-1383. |
| [69] | LIU Z N, WANG H D. A data augmentation based Kriging-assisted reference vector guided evolutionary algorithm for expensive dynamic multi-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 75: 101173. |
| [70] | DENIMAL E, SINOU J J. Advanced Kriging-based surrogate modelling and sensitivity analysis for rotordynamics with uncertainties[J]. European Journal of Mechanics-A/Solids, 2021, 90: 104331. |
| [71] | MAO Y X, WANG T Q, DUAN M L, et al. Multi-objective optimization of semi-submersible platforms based on a support vector machine with grid search optimized mixed kernels surrogate model[J]. Ocean Engineering, 2022, 260: 112077. |
| [72] | ZHU H Q, LIU T T. Rotor displacement self-sensing modeling of six-pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12296-12306. |
| [73] | LI J L, WANG P, DONG H C, et al. Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization[J]. Applied Soft Computing, 2022, 122: 108798. |
| [74] | LI F, SHANG Z K, LIU Y C, et al. Inverse distance weighting and radial basis function based surrogate model for high-dimensional expensive multi-objective optimization[J]. Applied Soft Computing, 2024, 152: 111194. |
| [75] | POLAT M E, CADIRCI S. Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123015. |
| [76] | GARLAND N A, MAULIK R, TANG Q, et al. Efficient data acquisition and training of collisional-radiative model artificial neural network surrogates through adaptive parameter space sampling[J]. Machine Learning: Science and Technology, 2022, 3(4): 045003. |
| [77] | WANG Z B, LU W X, CHANG Z B, et al. A combined search method based on a deep learning combined surrogate model for groundwater DNAPL contamination source identification[J]. Journal of Hydrology, 2023, 616: 128854. |
| [78] | WANG Z L, GU Y C, ZHANG S Y, et al. A transferred hybrid surrogate model integrating Gaussian membership virtual sample generation for small sample prediction: Applications in metal tube bending[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107560. |
| [79] | SUN R C, DUAN Q Y, MAO X. A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems[J]. Environmental Modelling & Software, 2022, 148: 105272. |
| [80] | YANG S Y, MENG D B, WANG H T, et al. A novel learning function for adaptive surrogate-model-based reliability evaluation[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2024, 382(2264): 20220395. |
| [81] | 张发品, 周瑾, 金超武. 鼠笼弹支-金属橡胶阻尼器刚度阻尼优化设计[J]. 机械与电子, 2014, 32(9): 19-22. |
| ZHANG F P, ZHOU J, JIN C W. Optimal design of stiffness and damper of squirrel cage elastic support-metal rubber damper[J]. Machinery & Electronics, 2014, 32(9): 19-22 (in Chinese). | |
| [82] | 李明明. 双转子结构动力特性模拟试验台设计及动态特性研究[D]. 郑州: 中原工学院, 2021: 22-36. |
| LI M M. Design and study of dynamic characteristics simulation test platform for dual rotor structure[D]. Zhengzhou: Zhongyuan University of Technology, 2021: 22-36 (in Chinese) . | |
| [83] | 徐宁. 舰船燃气轮机转子支撑系统动力学特性研究[D]. 北京: 中国舰船研究院, 2012: 7-15. |
| XU N. Research on the dynamics of rotor support system in marine gas turbine[D]. Beijing: China Ship Research and Development Academy, 2012: 7-15 (in Chinese). | |
| [84] | 余佳鹏. ARRIUS涡轴发动机结构分析[D]. 北京: 北京理工大学, 2017: 28-32. |
| YU J P. The structural analysis of ARRIUS turboshaft engine[D]. Beijing: Beijing Institute of Technology, 2017: 28-32 (in Chinese) . | |
| [85] | 马存. 鼠笼式挤压油膜阻尼器减振效果研究[D]. 石家庄: 河北科技大学, 2022: 7-8. |
| MA C. Research on vibration reduction effect of squirrel cage squeeze film damper[D]. Shijiazhuang: Hebei University of Science and Technology, 2022: 7-8 (in Chinese). | |
| [86] | 孙彦博, 梁恩广, 何建元. 燃气轮机悬臂式鼠笼与挤压油膜耦合刚度研究[J]. 热能动力工程, 2020, 35(3): 68-72, 86. |
| SUN Y B, LIANG E G, HE J Y. Study on coupling stiffness of gas turbine cantilever squirrel cage and squeeze film[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 68-72, 86 (in Chinese). | |
| [87] | 白孝栋, 蔚夺魁, 冯国全. 鼠笼式弹性支承的柔度计算及影响因素分析[J]. 航空发动机, 2023, 49(5): 149-154. |
| BAI X D, YU D K, FENG G Q. Flexibility calculation and influencing factors analysis of squirrel-cage elastic support[J]. Aeroengine, 2023, 49(5): 149-154 (in Chinese). | |
| [88] | SUN K, LUO Z, LI L, et al. Dynamic analysis of the variable stiffness support rotor system with elastic rings[J]. Nonlinear Dynamics, 2022, 110(1): 201-217. |
| [89] | 彭京徽, 周海仑, 张明, 等. 鼠笼弹性支承的刚度实验测试及计算分析[J]. 科学技术与工程, 2016, 16(21): 118-124. |
| PENG J H, ZHOU H L, ZHANG M, et al. Squirrel cage elastic support stiffness test and calculation analysis[J]. Science Technology and Engineering, 2016, 16(21): 118-124 (in Chinese). | |
| [90] | 周海仑, 曹刚毅, 冯祚崐, 等. 鼠笼弹性支承刚度的数值仿真及影响因素研究[J]. 郑州航空工业管理学院学报, 2024, 42(1): 5-11. |
| ZHOU H L, CAO G Y, FENG Z K, et al. Numerical simulation of elastic support stiffness of squirrel cage and its influencing factors[J]. Journal of Zhengzhou University of Aeronautics, 2024, 42(1): 5-11 (in Chinese). | |
| [91] | 彭京徽, 周海仑, 张明, 等. 鼠笼弹性支承的刚度计算及其影响因素[J]. 科学技术与工程, 2018, 18(4): 175-180. |
| PENG J H, ZHOU H L, ZHANG M, et al. Calculated and influenced factors of the squirrel cage elastic support stiffness[J]. Science Technology and Engineering, 2018, 18(4): 175-180 (in Chinese). | |
| [92] | 田艳行. 弹性支承转子系统减振分析与试验研究[D]. 沈阳: 东北大学, 2018: 14-15. |
| TIAN Y X. Vibration reducing analysis and experimental study of a rotor system with elastic support[D]. Shenyang: Northeastern University, 2018: 14-15 (in Chinese) . | |
| [93] | 宋谭, 陈九如, 李浦, 等. 鼠笼弹性支承干摩擦减振试验研究和参数识别[J]. 西安交通大学学报, 2023, 57(11): 160-170. |
| SONG T, CHEN J R, LI P, et al. Experimental study and parameter identification of dry friction vibration damping in squirrel cage elastic support[J]. Journal of Xi’an Jiaotong University, 2023, 57(11): 160-170 (in Chinese). | |
| [94] | 罗忠, 刘凯宁, 李雷, 等. 一种基于数据驱动的鼠笼式弹性支承结构刚度计算方法: CN115169035A[P]. 2022-10-11. |
| LUO Z, LIU K N, LI L, et al. Method for calculating rigidity of squirrel-cage elastic supporting structure based on data driving: CN115169035A[P]. 2022-10-11 (in Chinese). | |
| [95] | 王强. 弹性支承结构的动力学特性及其振动传递研究[D]. 大连: 大连交通大学, 2021: 33-37. |
| WANG Q. Research on dynamic characteristics and vibration transmission of elastic supporting structure[D]. Dalian: Dalian Jiaotong University, 2021: 33-37 (in Chinese). | |
| [96] | 王明杰, 李凌霄, 时可可, 等. 弹性支承一体化轴承刚度测量分析与研究[J]. 轴承, 2018(10): 59-61. |
| WANG M J, LI L X, SHI K K, et al. Analysis and research on stiffness measurement for bearing integrated with elastic support[J]. Bearing, 2018(10): 59-61 (in Chinese). | |
| [97] | 唐玉波, 周博文, 周辉, 等. 静刚度试验器及静刚度试验方法: CN112014044A[P]. 2020-12-01. |
| TANG Y B, ZHOU B W, ZHOU H, et al. Static stiffness tester and static stiffness test method: CN112014044A[P]. 2020-12-01 (in Chinese). | |
| [98] | 姚宏飞. 弓形弹簧弹性联轴器强度和动力特性分析[D]. 南京: 南京航空航天大学, 2017: 73-74. |
| YAO H F. Strength and dynamic characteristics analysis of flexible coupling with bow spring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 73-74 (in Chinese) . | |
| [99] | 王作顺, 齐权, 吕宏亮. 一种鼠笼弹支轴承刚度的测量装置: CN209131973U[P]. 2019-07-19. |
| WANG Z S, QI Q, LYU H L. Device for measuring rigidity of squirrel-cage elastic support bearing: CN209131973U[P]. 2019-07-19 (in Chinese). | |
| [100] | 徐方程. 燃气轮机转子—鼠笼—挤压油膜阻尼器动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 16-21. |
| XU F C. Research on dynamic characteristics of gas turbine rotor-squirrel cage-SFD system[D]. Harbin: Harbin Institute of Technology, 2009: 16-21 (in Chinese). | |
| [101] | 罗贵火, 孔旭东, 陈茉莉, 等. 一种大刚度鼠笼静刚度测试装置及测试方法: CN119180103A[P]. 2019-04-02. |
| LUO G H, KONG X D, CHEN M L, et al. A device and method for testing the static stiffness of a large stiffness squirrel cage: China. CN109556811A[P]. 2019-04-02 (in Chinese). | |
| [102] | 王洋洲, 刘倩, 丁振晓, 等. 折返式鼠笼弹性支承刚度特性研究[J]. 推进技术, 2017, 38(9): 2078-2085. |
| WANG Y Z, LIU Q, DING Z X, et al. Study on stiffness characteristics for folded squirrel cage elastic support[J]. Journal of Propulsion Technology, 2017, 38(9): 2078-2085 (in Chinese). | |
| [103] | 王洋洲, 刘倩, 苏卫民, 等. 折返式鼠笼弹性支承刚度试验技术研究[J]. 热能动力工程, 2018, 33(4): 43-50. |
| WANG Y Z, LIU Q, SU W M, et al. Study of the technologies for testing the stiffness of a fold-back squirrel cage type elastic support[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(4): 43-50 (in Chinese). | |
| [104] | 彭春雷, 侯明. 弹性支承器刚度测量装置及测量方法: CN103245474A[P]. 2013-08-14. |
| PENG C L, HOU M. Measuring device and method for rigidity of elastic supporting device: CN103245474A[P]. 2013-08-14 (in Chinese). | |
| [105] | ZHANG L, ZHANG T, OUYANG H J, et al. Natural frequency assignment of a pipeline through structural modification in layout optimization of elastic supports[J]. Journal of Sound and Vibration, 2023, 561: 117702. |
| [106] | HAN F, DAN D H, DENG Z C. A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports[J]. Mechanical Systems and Signal Processing, 2021, 146: 106978. |
| [107] | 杜家磊, 李铭, 王怡萱, 等. 支承结构参与振动对涡轮泵转子动特性的影响[J]. 推进技术, 2023, 44(4): 195-201. |
| DU J L, LI M, WANG Y X, et al. Effects of vibration of supporting structure on dynamic characteristics of a turbopump rotor[J]. Journal of Propulsion Technology, 2023, 44(4): 195-201 (in Chinese). | |
| [108] | 罗忠, 刘凯宁, 刘家希, 等. 支承动刚度对转子系统临界转速的影响及试验验证[J]. 机械工程学报, 2023, 59(21): 245-255. |
| LUO Z, LIU K N, LIU J X, et al. Influence of dynamic stiffness of support on critical speed of rotor system and experimental verification[J]. Journal of Mechanical Engineering, 2023, 59(21): 245-255 (in Chinese). | |
| [109] | 黄健伟. 双转子参数化建模及动力特性优化[D]. 南京: 南京航空航天大学, 2015: 26-28. |
| HUANG J W. Parameterization modeling and dynamic characteristics optimization of a dual-rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 26-28 (in Chinese). | |
| [110] | 罗忠, 刘家希, 刘凯宁, 等. 弹性环式支承结构动刚度分析及其对转子系统的影响[J]. 东北大学学报(自然科学版), 2022, 43(5): 667-673. |
| LUO Z, LIU J X, LIU K N, et al. Analysis of dynamic stiffness of the elastic ring support structure and its influence on the rotor system[J]. Journal of Northeastern University (Natural Science), 2022, 43(5): 667-673 (in Chinese). | |
| [111] | 凤朝军. 新式支承布局反向旋转双转子系统动力特性研究[D]. 南京: 南京航空航天大学, 2016: 35-38. |
| FENG C J. The research of the dynamic characteristics of the new bearing layout counter-rotating dual-rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 35-38 (in Chinese). | |
| [112] | 张康. 含浮环式挤压油膜阻尼器结构与动力特性研究[D]. 南京: 南京航空航天大学, 2014: 46-49. |
| ZHANG K. Research on structural and dynamic characteristics of floating ring squeeze film damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 46-49 (in Chinese). | |
| [113] | LI L, LUO Z, LIU K N, et al. Dynamic stiffness characteristics of aero-engine elastic support structure and its effects on rotor systems: mechanism and numerical and experimental studies[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 221-236. |
| [114] | 王平, 肖杰灵, 赵才友, 等. 动刚度的测试方法及系统: CN102980756A[P]. 2013-03-20. |
| WANG P, XIAO J L, ZHAO C Y, et al. Method and system for testing dynamic stiffness: CN102980756A[P]. 2013-03-20 (in Chinese). | |
| [115] | 梁昊天. 航空发动机缩尺动力学相似整机试验器设计与建模研究[D]. 南京: 南京航空航天大学, 2020: 121-123. |
| LIANG H T. Research on design and modeling of a reduced-scale whole engine dynamics test rig[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 121-123 (in Chinese). | |
| [116] | 乔留春. 弹支结构用异型轴承刚度特性分析及试验研究[D]. 大连: 大连理工大学, 2018: 19-22. |
| QIAO L C. Stiffness characteristics analysis and experimental research of the special-shaped bearing for elastic support structure[D]. Dalian: Dalian University of Technology, 2018: 19-22 (in Chinese). | |
| [117] | HAN W J, LU Z Q, NIU M Q, et al. A high-static-low-dynamics stiffness vibration isolator via an elliptical ring[J]. Mechanical Systems and Signal Processing, 2022, 162: 108061. |
| [118] | 刘志强. 航空发动机状态评估技术及试验研究[D]. 南京: 东南大学, 2022: 46-47. |
| LIU Z Q. Experimental research on aero-engine condition assessment technology[D]. Nanjing: Southeast University, 2022: 46-47 (in Chinese). | |
| [119] | 马艳红, 陆宏伟, 朱海雄, 等. 弹性环金属橡胶支承结构刚度设计与试验验证[J]. 航空学报, 2013, 34(6): 1301-1308. |
| MA Y H, LU H W, ZHU H X, et al. Structural stiffness design and experimental evaluation of elastic ring-metal rubber damper[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1301-1308 (in Chinese). | |
| [120] | LUO H T, LI Y X, YU C S, et al. Numerical and experimental analysis of nonlinear static and dynamic stiffness of angular contact ball bearing[J]. Nonlinear Dynamics, 2023, 111(3): 2281-2309. |
| [121] | 窦唯, 赵帅元, 金志磊. 结构参数对折返式鼠笼力学特性影响及试验研究[J/OL]. 振动工程学报, 2024: 1-7. (2024-03-04). . |
| DOU W, ZHAO S Y, JIN Z L. Experimental study and analysis on the mechanical characteristics of squirrel cages under different structural parameters[J/OL]. Journal of Vibration Engineering, 2024: 1-7. (2024-03-04). (in Chinese). | |
| [122] | 刘晶. 轮盘超速试验台减振结构动态特性分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2009: 20-22. |
| LIU J. Analysis and optimization of dynamic characteristic of the damping structrue on the disk over-running test rig[D]. Harbin: Harbin Institute of Technology, 2009: 20-22 (in Chinese). | |
| [123] | ZHANG W, HAN B B, LI X, et al. Multiple-objective design optimization of squirrel cage for squeeze film damper by using cell mapping method and experimental validation[J]. Mechanism and Machine Theory, 2019, 132: 66-79. |
| [124] | 粟勇, 杨正兵, 李光辉, 等. 串联式鼠笼弹性支承高周疲劳性能试验[J]. 燃气涡轮试验与研究, 2014, 27(2): 21-24, 58. |
| SU Y, YANG Z B, LI G H, et al. Experimental study on high-cycle fatigue property of elastic support with multiple squirrel-cages[J]. Gas Turbine Experiment and Research, 2014, 27(2): 21-24, 58 (in Chinese). | |
| [125] | 王永亮, 刘旺, 杨明林, 等. 某航空弹性鼠笼疲劳寿命故障机理分析与试验[J]. 大连海事大学学报, 2022, 48(4): 102-110. |
| WANG Y L, LIU W, YANG M L, et al. Fatigue life failure mechanism analysis and test of an aviation elastic squirrel cage[J]. Journal of Dalian Maritime University, 2022, 48(4): 102-110 (in Chinese). | |
| [126] | 雷沫枝. 基于弹性支承动应力测量的转子系统故障诊断方法[D]. 长沙: 湖南大学, 2010: 12-19. |
| LEI M Z. The faults diagnosis of rotor system base on dynamic stress measurement of elastic support[D]. Changsha: Hunan University, 2010: 12-19 (in Chinese) . | |
| [127] | 王美令, 温保岗, 韩清凯. 基于弹支鼠笼应变的转子支点载荷辨识实验装置及方法: CN109827772A[P]. 2019-05-31. |
| WANG M L, WEN B G, HAN Q K. Rotor fulcrum load identification experimental device and method based on retainer spring squirrel cage strain: CN109827772A[P]. 2019-05-31 (in Chinese). | |
| [128] | HAN Q K, CHEN Y G, ZHANG H, et al. Vibrations of rigid rotor systems with misalignment on squirrel cage supports[J]. Journal of Vibroengineering, 2016, 18(7): 4329-4339. |
| [129] | 侯明, 闫贺, 王荀, 等. 鼠笼式弹支应变测试方法及航空发动机鼠笼式弹支: CN115219201A[P]. 2022-10-21. |
| HOU M, YAN H, WANG X, et al. Squirrel-cage elastic support strain test method and aero-engine squirrel-cage elastic support: CN115219201A[P]. 2022-10-21 (in Chinese). | |
| [130] | YANG W X, CHEN Y N, HOU M, et al. An analytical method for the elastic supporter dynamic stress signals applied to aero-engine fault diagnosis[C]∥ 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing). Piscataway: IEEE Press, 2021: 1-7. |
| [131] | 张广辉, 黄延忠, 陈亚龙, 等. 一种挤压油膜阻尼器动力学系数的识别方法: CN113758697A[P]. 2021-12-07. |
| ZHANG G H, HUANG Y Z, CHEN Y L, et al. Method for identifying dynamic coefficient of squeeze film damper: CN113758697A[P]. 2021-12-07 (in Chinese). | |
| [132] | 何春亮, 马会防. 转子轴向力测试装置和测试方法: CN111238711A[P]. 2020-06-05. |
| HE C L, MA H F. Rotor axial force testing device and testing method: CN111238711A[P]. 2020-06-05 (in Chinese). | |
| [133] | 边杰, 张春月, 王平, 等. 转子轴向力测量装置及测量方法: CN107202663A[P]. 2017-09-26. |
| BIAN J, ZHANG C Y, WANG P, et al. Rotor axial force measurement device and measurement method: CN107202663A[P]. 2017-09-26 (in Chinese). | |
| [134] | 刘国栋, 银越千, 金海良, 等. 鼠笼式弹性支承: CN111608748A[P]. 2020-09-01. |
| LIU G D, YIN Y Q, JIN H L, et al. Squirrel-cage type elastic support: CN111608748A[P]. 2020-09-01 (in Chinese). | |
| [135] | 刘国栋, 银越千, 宋双文, 等. 鼠笼式弹支的轴向力测试方法、装置、电子设备及介质: CN113188704A[P]. 2021-07-30. |
| LIU G D, YIN Y Q, SONG S W, et al. Axial force testing method and device of squirrel-cage elastic support, electronic equipment and medium: CN113188704A[P]. 2021-07-30 (in Chinese). | |
| [136] | 李洪美, 欧阳运芳. 航空发动机弹支-测力环双向轴向力测试方法[J]. 航空动力学报, 2022, 37(7): 1413-1424. |
| LI H M, OUYANG Y F. Measurement method of biaxial axial force of aero-engine elastic support and force-measuring ring[J]. Journal of Aerospace Power, 2022, 37(7): 1413-1424 (in Chinese). | |
| [137] | 边杰, 梅庆, 王金舜, 等. 可测量转子轴向载荷的弹性支承: CN105547534A[P]. 2016-05-04. |
| BIAN J, MEI Q, WANG J S, et al. Elastic support capable of measuring axial load of rotor: CN105547534A[P]. 2016-05-04 (in Chinese). | |
| [138] | 边杰, 卢艳辉, 刘飞春, 等. 轴向载荷测量一体化鼠笼弹性支承及测量方法: CN115539145A[P]. 2022-12-30. |
| BIAN J, LU Y H, LIU F C, et al. Axial load measurement integrated mouse cage elastic support and measurement method: CN115539145A[P]. 2022-12-30 (in Chinese). | |
| [139] | 边杰, 刘飞春, 梅庆, 等. 一体化鼠笼弹性支承及轴向力测量方法: CN115539146A[P]. 2022-12-30. |
| BIAN J, LIU F C, MEI Q, et al. Integrated mouse cage elastic support and axial force measuring method: CN115539146A[P]. 2022-12-30 (in Chinese). | |
| [140] | 边杰, 徐友良, 卢艳辉, 等. 弹条交错轴向力测量一体化弹性支承及测量方法: CN115539144A[P]. 2022-12-30. |
| BIAN J, XU Y L, LU Y H, et al. Elastic strip staggered axial force measurement integrated elastic support and measurement method: CN115539144A[P]. 2022-12-30 (in Chinese). | |
| [141] | 边杰, 梅庆, 卢艳辉, 等. 转子轴向载荷可测试的一体化弹性支承及测量方法: CN115539147A[P]. 2022-12-30. |
| BIAN J, MEI Q, LU Y H, et al. Rotor axial load testable integrated elastic support and measuring method: CN115539147A[P]. 2022-12-30 (in Chinese). | |
| [142] | 边杰, 刘飞春, 刘超, 等. 一体化鼠笼弹性支承及转子轴向力测量方法: CN116335775A[P]. 2023-06-27. |
| BIAN J, LIU F C, LIU C, et al. Integrated squirrel cage elastic support and rotor axial force measuring method: CN116335775A[P]. 2023-06-27 (in Chinese). | |
| [143] | 边杰, 刘飞春, 孙宇星, 等. 一种底座带测力单元的一体化鼠笼弹支: CN117404184A[P]. 2024-01-16. |
| BIAN J, LIU F C, SUN Y X, et al. Integrated squirrel cage elastic support with force measuring unit on base: CN117404184A[P]. 2024-01-16 (in Chinese). | |
| [144] | 温朝杰, 李万嘉, 李文超, 等. 折返式弹支一体化球轴承刚度研究[J]. 轴承, 2023(5): 6-12. |
| WEN C J, LI W J, LI W C, et al. Research on stiffness of folded elastic support integrated ball bearings[J]. Bearing, 2023(5): 6-12 (in Chinese). | |
| [145] | 朱东华, 许开富, 严俊峰, 等. 一种鼠笼弹性支承轴承腔结构: CN110005545A[P]. 2019-07-12. |
| ZHU D H, XU K F, YAN J F, et al. Mouse cage elastic support bearing cavity structure: CN110005545A[P]. 2019-07-12 (in Chinese). | |
| [146] | 秦广亮, 吴玫, 金贺, 等. 鼠笼弹性支承轴承外圈折返槽的加工[J]. 轴承, 2020(8): 16-18. |
| QIN G L, WU M, JIN H, et al. Processing of returnable groove of squirrel-cage elastically-supported bearing outer rings[J]. Bearing, 2020(8): 16-18 (in Chinese). | |
| [147] | 刘雪彬, 何彬, 杨永波, 等. 带油膜阻尼器的折返式弹性支撑: CN104358820A[P]. 2015-02-18. |
| LIU X B, HE B, YANG Y B, et al. Back-turning type elastic supporter with oil film damper: CN104358820A[P]. 2015-02-18 (in Chinese). | |
| [148] | 陈鼎欣, 周一夔, 刘才丽, 等. 一种弹性支承结构: CN116066185A[P]. 2023-05-05. |
| CHEN D X, ZHOU Y K, LIU C L, et al. Elastic supporting structure: CN116066185A[P]. 2023-05-05 (in Chinese). | |
| [149] | 边杰, 梅庆, 陈亚农. 一种弹支挤压油膜金属橡胶阻尼器: CN114109529A[P]. 2022-03-01. |
| BIAN J, MEI Q, CHEN Y N. Elastic support squeeze oil film metal rubber damper: CN114109529A[P]. 2022-03-01 (in Chinese). | |
| [150] | 时可可, 张帅军, 李凌霄, 等. 弹性支承轴承套圈径向刚度检测方法研究[J]. 轴承, 2019(4): 63-66. |
| SHI K K, ZHANG S J, LI L X, et al. Research on detection method for radial stiffness of elastically supported bearing rings[J]. Bearing, 2019(4): 63-66 (in Chinese). | |
| [151] | 吴永林, 陈宇, 许晓东, 等. 一种鼠笼弹支轴承外圈窗孔加工工艺: CN111390511A[P]. 2020-07-10. |
| WU Y L, CHEN Y, XU X D, et al. Processing technology for apertures of outer ring of elastic supporting bearing of mouse cage: CN111390511A[P]. 2020-07-10 (in Chinese). | |
| [152] | 王多亮, 郭帅, 徐俊, 等. 一种鼠笼弹性支撑结构: CN218071278U[P]. 2022-12-16. |
| WANG D L, GUO S, XU J, et al. Elastic supporting structure of mouse cage: CN218071278U[P]. 2022-12-16 (in Chinese). | |
| [153] | 李渊. 基于ANSYS的弹性支承轴承分析[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-22. |
| LI Y. Analysis of bearing with flexible support based on ANSYS[D]. Harbin: Harbin Institute of Technology, 2017: 1-22 (in Chinese). | |
| [154] | 张震坤, 何立东, 黄秀金, 等. 鼠笼式调谐质量阻尼器用于转子振动控制的研究[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 82-87. |
| ZHANG Z K, HE L D, HUANG X J, et al. Reduction of the vibration of a rotor system by using a cage tuned mass damper[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(3): 82-87 (in Chinese). | |
| [155] | OUYANG X, CAO S Q, LI G W. Nonlinear dynamics of a dual-rotor-bearing system with active elastic support dry friction dampers[J]. Nonlinear Dynamics, 2024, 112(10): 7875-7907. |
| [156] | LIAO M F, WANG S J. Experimental investigation of an active elastic support/dry friction damper on vibration control of rotor systems[J]. International Journal of Turbo and Jet Engines, 2014, 31(1): 13-17. |
| [157] | LIAO M F, SONG M B, WANG S J. Active elastic support/dry friction damper with piezoelectric ceramic actuator[J]. Shock and Vibration, 2014, 2014(1): 712426. |
| [158] | WANG S J, LIAO M F, SONG M B, et al. An active elastic support/dry friction damper: New modeling and analysis for vibration control of rotor systems[M]∥ Proceedings of the 10th International Conference on Rotor Dynamics-IFToMM. Cham: Springer International Publishing, 2018: 19-33. |
| [159] | 刘源, 王四季, 陈佳窈, 等. 弹支干摩擦阻尼器对带有轴承共腔结构涡轴发动机的减振特性[J]. 振动与冲击, 2024, 43(16): 166-175. |
| LIU Y, WANG S J, CHEN J Y, et al. Damping characteristics of a turboshaft engine with mid turbine frame controlled by an elastic support/dry friction damper[J]. Journal of Vibration and Shock, 2024, 43(16): 166-175 (in Chinese). | |
| [160] | 王四季, 廖明夫. 弹支干摩擦阻尼器在线控制转子失稳[J]. 振动 测试与诊断, 2012, 32(2): 323-326, 348. |
| WANG S J, LIAO M F. Online control of rotor system instability by elastic support/dry[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(2): 323-326, 348 (in Chinese). | |
| [161] | 宋明波, 廖明夫, 王四季. 折返式可控弹支干摩擦阻尼器设计及减振试验研究[J]. 振动与冲击, 2019, 38(14): 18-22. |
| SONG M B, LIAO M F, WANG S J. Experimental investigation on the vibration reduction performance of a damper with C-shape tunable elastic support and dry friction[J]. Journal of Vibration and Shock, 2019, 38(14): 18-22 (in Chinese). | |
| [162] | 王四季, 王程阳, 林大方, 等. 主控式弹支干摩擦阻尼器一体化构型设计及减振实验研究[J]. 推进技术, 2023, 44(8): 187-196. |
| WANG S J, WANG C Y, LIN D F, et al. Integrated configuration design and experimental research on vibration reduction of an active elastic support/dry friction damper[J]. Journal of Propulsion Technology, 2023, 44(8): 187-196 (in Chinese). | |
| [163] | 率志君, 焦殿霖, 黄健哲, 等. 一种弹性支承干摩擦阻尼器: CN107120377A[P]. 2017-09-01. |
| SHUAI Z J, JIAO D L, HUANG J Z, et al. Elastic support dry friction damper: CN107120377A[P]. 2017-09-01 (in Chinese). | |
| [164] | 王四季, 廖明夫, 宁培杰, 等. 一种应用于航空发动机的主控式弹支干摩擦阻尼器: CN112303183A[P]. 2021-02-02. |
| WANG S J, LIAO M F, NING P J, et al. Main control type elastically-supported dry friction damper applied to aero-engine: CN112303183A[P]. 2021-02-02 (in Chinese). | |
| [165] | 闫晓军, 张小勇, 于颖杰. 一种鼠笼式SMA主动变刚度转子支承装置: CN103244276A[P]. 2013-08-14. |
| YAN X J, ZHANG X Y, YU Y J. Squirrel-cage SMA (shape memory alloy) driving variable rigidity rotor supporting device: CN103244276A[P]. 2013-08-14 (in Chinese). | |
| [166] | 于颖杰, 黄大伟, 叶伟, 等. 几个解决共振问题的智能转子支承结构设计[J]. 科技传播, 2013, 5(24): 170-172. |
| YU Y J, HUANG D W, YE W, et al. Design of several intelligent rotor supporting structures to solve resonance problems[J]. Public Communication of Science & Technology, 2013, 5(24): 170-172 (in Chinese). | |
| [167] | 宋明波. 弹支干摩擦阻尼器与转子匹配的动力学设计方法研究[D]. 西安: 西北工业大学, 2016: 1-17. |
| SONG M B. Dynamic design of elastic support/dry friction damper matching rotor[D]. Xi’an: Northwestern Polytechnical University, 2016: 1-17 (in Chinese) . | |
| [168] | 白欢欢. 基于变刚度弹性支承的液压管路流固耦合振动的数值分析[D]. 秦皇岛: 燕山大学, 2014: 23-24. |
| BAI H H. Numerical analysis on the fluid-solid coupling vibration of hydraulic pipeline with elastic support[D]. Qinhuangdao: Yanshan University, 2014: 23-24 (in Chinese). | |
| [169] | 万召, 沈小刚. 弹性支承结构和涡轮发动机转子试验台: CN107817107A[P]. 2018-03-20. |
| WAN Z, SHEN X G. Elastic support structure and turbine engine rotor testing platform: CN107817107A[P]. 2018-03-20 (in Chinese). | |
| [170] | 费庆国, 何俊增, 张大海, 等. 具有刚度梯度的鼠笼式弹性支承: CN109026207A[P]. 2018-12-18. |
| FEI Q G, HE J Z, ZHANG D H, et al. Squirrel cage type elastic support with rigid gradient: CN109026207A[P]. 2018-12-18 (in Chinese). | |
| [171] | 边杰, 陈亚农, 刘创, 等. 鼠笼弹性支承器径向刚度调节装置和方法、航空发动机: CN111608749A[P]. 2020-09-01. |
| BIAN J, CHEN Y N, LIU C, et al. Squirrel cage elastic supporter radial stiffness adjusting device, method and aeroengine: CN111608749A[P]. 2020-09-01 (in Chinese). | |
| [172] | 边杰, 陈亚农, 唐广. 一种弹性支承挤压油膜阻尼器: CN118815852A[P]. 2019-03-05. |
| BIAN J, CHEN Y N, TANG G, et al. An elastic support squeeze film damper: China. ZL2017102928827[P]. 2019-03-05 (in Chinese). | |
| [173] | 祁中宽, 杨健美, 杨佳彬, 等. 一种可调挤压油膜阻尼器: CN108279119A[P]. 2022-08-30. |
| QI Z K, YANG J M, YANG J B, et al. An adjustable squeeze film damper: China. ZL2020115671733[P]. 2022-08-30 (in Chinese). | |
| [174] | 陆晓锋, 况成玉, 江奔, 等. 航空发动机的轴承弹性支座: CN213419234U[P]. 2021-06-11. |
| LU X F, KUANG C Y, JIANG B, et al. Elastic bearing support of aero-engine: CN213419234U[P]. 2021-06-11 (in Chinese). | |
| [175] | 刘闯, 黄福增, 安中彦, 等. 一种刚度可调的发卡式弹性支承刚度模拟装置: CN115077913A[P]. 2022-09-20. |
| LIU C, HUANG F Z, AN Z Y, et al. Rigidity-adjustable hairpin type elastic support rigidity simulation device: CN115077913A[P]. 2022-09-20 (in Chinese). | |
| [176] | 黄鑫, 伍登峰, 赵凯, 等. 一种斜拉索式可变刚度变阻尼鼠笼: CN115075950A[P]. 2022-09-20. |
| HUANG X, WU D F, ZHAO K, et al. Stay cable type variable-rigidity variable-damping mouse cage: CN115075950A[P]. 2022-09-20 (in Chinese). | |
| [177] | 朱拥勇, 彭京徽, 周海仑, 等. 一种具有多轴承支点鼠笼弹性支承: CN207989146U[P]. 2018-10-19. |
| ZHU Y Y, PENG J H, ZHOU H L, et al. It holds fulcrum squirrel cage flexible support to have multiaxis: CN207989146U[P]. 2018-10-19 (in Chinese). | |
| [178] | 邢广鹏, 王子尧, 张亚华, 等. 一种弹性支承结构: CN112483199A[P]. 2023-06-20. |
| XING G P, WANG Z Y, ZHANG Y H, et al. An elastic support structure: China. ZL2021108252763[P]. 2023-06-20 (in Chinese). | |
| [179] | 李晓冲, 吴哲, 王华, 等. 一种可调节弹性支承结构: CN115306497A[P]. 2022-11-08. |
| LI X C, WU Z, WANG H, et al. Adjustable elastic supporting structure: CN115306497A[P]. 2022-11-08 (in Chinese). | |
| [180] | GEROLDOVICH T A, MIKHAJLOVICH G S, VALEREVICH U A. Elasticity-damper support with adjustable stiffness: Russia. RU2623703C1[P]. 2017-06-28. |
| [181] | MIKHAJLOVICH G S, ALEKSANDROVICH Z S, GEROLDOVICH T A. Resilient support with adjustable rigidity for bench dynamic test of turbomachine rotors: Russia. RU2578935[P]. 2016-03-27. |
| [182] | 徐宁, 何鹏, 刘勋. 一种智能振动控制的旋转机械悬臂式弹性支承部件: CN210072424U[P]. 2020-02-14. |
| XU N, HE P, LIU X. Intelligent vibration control cantilever type elastic supporting component of rotary machine: CN210072424U[P]. 2020-02-14 (in Chinese). | |
| [183] | 蒋天楚, 周彪, 沈爱中. 径向空气轴承弹性支撑结构: CN213711625U[P]. 2021-07-16. |
| JIANG T C, ZHOU B, SHEN A Z. Radial air bearing elastic supporting structure: CN213711625U[P]. 2021-07-16 (in Chinese). | |
| [184] | 李昱瑶, 岳腾. 一种组合式弹性支承装置: CN203614601U[P]. 2014-05-28. |
| LI Y Y, YUE T. Combined type elastic supporting device: CN203614601U[P]. 2014-05-28 (in Chinese). | |
| [185] | 宋明波, 廖明夫, 王四季, 等. 一种智能结构弹支干摩擦阻尼器: CN105526304A[P]. 2016-04-27. |
| SONG M B, LIAO M F, WANG S J, et al. Elastic support dry-friction damper with intelligent structure: CN105526304A[P]. 2016-04-27 (in Chinese). | |
| [186] | GANIGER R S, DRUMMOND S F, SCHNEIDER D S. Dual spring bearing support housing: America. US2013/0280063A1[P]. 2013-10-24. |
| [1] | Guixian QU, Dongyang LIU, Xu YANG, Tian QIU, Chuankai LIU, Shuiting DING, Shuzheng YUAN, Kan GUO. Remaining useful life prediction method based on temporal information enhancement of sensors [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 231634-231634. |
| [2] | Muxuan PAN, Sirong LU, Ke CHENG, Xiaotao LI. Review on constraint control in aircraft engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 30533-030533. |
| [3] | Jiangfeng FU, Shijie ZHONG, Xianwei LIU, Pengfei WEI, Hanting HUANG. Improved PCE model with coupled double-layer parameter updating for uncertainty analysis in fuel centrifugal pump [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 130126-130126. |
| [4] | ZHENG Tan, YANG Xiaohe, YE Jun, FENG Jinzhang. Influence of various core working conditions on twin-duct matching in fan booster [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125477-125477. |
| [5] | HE Yong, WANG Hong, LI Jing, QI Yankun. Joint decision making for condition-based maintenance and spare parts ordering of components based on vibration monitoring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225304-225304. |
| [6] | YANG Shanjie, YAN Xudong, GUO Hongbo. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527613-527613. |
| [7] | ZHANG Chuncheng, WANG Hao, CHEN Guoguang. Impacts of temperature fields on rotor over-speed fracture of aircraft engines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 222879-222879. |
| [8] | HUANG Binda, ZHOU Laishui, AN Luling, WEI Wei, WANG Xiaoping, BU Qingkui. A process model driven derivative design method for machining fixtures of aircraft engine parts [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 420091-420091. |
| [9] | WANG Hao, WANG Liwen, WANG Tao, DING Huapeng. Method and implementation of remanufacture and repair of aircraft engine damaged blades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(3): 1036-1048. |
| [10] | ZHU Yu, WAN Min. External pressure forming of thin walled W-shaped sealing rings in aircraft engines using movable dies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(7): 2457-2467. |
| [11] | MA Anxiang, LI Yanjun, CAO Yuyuan, WANG Zhenyu, AN Gang. Intelligent diagnosis for aircraft engine wear fault based on immune theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 1896-1904. |
| [12] | ZHANG Shugang, GUO Yingqing, FENG Jianpeng. Design and Simulation Validation of an Integrated On-board Aircraft Engine Diagnostic Architecture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 381-390. |
| [13] | JIN Chaowu, XU Longxiang, ZHU Yili. Research on Displacement Sensor of High Temperature Active Magnetic Bearing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 230-239. |
| [14] | LIU Jia, XU Zhengyang, WAN Longkai, ZHU Di, ZHU Dong. Design and Experiment of Electrolyte Flow Mode in Electrochemical Machining of Blisk [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 259-267. |
| [15] | MA Hui, ZHANG Dalin, MENG Fanxin, CHEN Weijian. Experiment of Electro-thermal Anti-icing on a Composite Assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1846-1853. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

