[1] Li Y J, Zuo H F, Wu Z F. Intelligent diagnostics for engine wear failure based on debris analysis[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(3): 221-226 (in Chinese). 李艳军, 左洪福, 吴振峰. 基于磨粒分析方法的发动机磨损故障智能诊断技术[J]. 南京航空航天大学学报, 2001, 33(3): 221-226.
[2] Williams J H, Davies A, Drake P R. Condition-based maintenance and machine diagnostics[J]. Chapman and Hall, 1992, 87(5): 74-86.
[3] Wu Z F. The research of engine wear faults diagnosis based on debris analysis and data fusion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2001 (in Chinese). 吴振锋. 基于磨粒分析和信息融合的发动机磨损故障诊断技术研究[D]. 南京: 南京航空航天大学, 2001.
[4] Chen G, Zuo H F. Expert systems of engine wear fault diagnosis based on knowledge rule[J]. Journal of Aerospace Power, 2004, 19(1): 23-29 (in Chinese). 陈果, 左洪福. 基于知识规则的发动机磨损故障诊断专家系统[J]. 航空动力学报, 2004, 19(1): 23-29.
[5] Wen Z H, Zuo H F. A diagnosis method for aero engine wear fault based on rough sets theory and integrated neural network[J]. China Mechanical Engineering, 2007, 18(21): 2580-2584 (in Chinese). 文振华, 左洪福. 基于粗糙集-集成神经网络的航空发动机磨损故障诊断方法[J]. 中国机械工程, 2007, 18(21): 2580-2584.
[6] Luh G C, Cheng W C. Immune model-based fault diagnosis[J]. Mathematics and Computers in Simulation, 2005, 67(6): 515-539.
[7] Mo H W. Principle and application of artificial immune system[M]. Harbin: Harbin Institute of Technology Press, 2003 (in Chinese). 莫宏伟. 人工免疫系统原理与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003.
[8] Liu Y H. The research of anomaly detection and fault diagnosis based on artificial immune system[D]. Shanghai: Shanghai University, 2013 (in Chinese). 刘颖慧. 基于人工免疫系统的异常状态监测及故障诊断研究[D]. 上海: 上海大学, 2013.
[9] Laurentys C A, Palhares R M, Caminhas W M. Design of an artificial immune system based on danger model for fault detection[J]. Expert Systems with Applications, 2010, 37(7): 5145-5152.
[10] Ghosh K, Srinivasan R. Immune-system-inspired approach to process monitoring and fault diagnosis[J]. Industrial and Engineering Chemistry Research, 2010, 50(3): 1637-1651.
[11] Aydin I, Karakose M, Akin E. An adaptive artificial immune system for fault classification[J]. Journal of Intelligent Manufacturing, 2012, 23(5): 1489-1499.
[12] Sha J G. The research on fault diagnosis of aero-engine digital control system based on artificial immune theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 沙金刚. 基于免疫原理的发动机数控系统故障诊断研究[D]. 南京: 南京航空航天大学, 2007.
[13] Hou S L, Wang W, Qiao L, et al. A neural network model of compressor stall detection based on negative selection principle[J]. Electronics Optics and Control, 2010, 17(5): 38-41 (in Chinese). 侯胜利, 王维, 乔丽, 等. 压气机失速检测的神经网络反面选择模型[J]. 电光与控制, 2010, 17(5): 38-41.
[14] Gao J W, Zhang P L, Wu D H, et al. A fault diagnosis approach of engine using immunological theory and spectrometric oil analysis[J]. Chinese Internal Combustion Engine Engineering, 2008, 29(1): 77-80 (in Chinese). 高经纬, 张培林, 吴定海, 等. 一种基于油液光谱分析和免疫原理的内燃机磨损故障诊断方法[J]. 内燃机工程, 2008, 29(1): 77-80.
[15] Wu X. Research on aero-engine intelligent monitoring based on the oil analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). 吴晓. 基于油液分析的航空发动机磨损状态智能监测研究[D]. 南京: 南京航空航天大学, 2012.
[16] Forrest S, Perelson A S, Allen L, et al. Self-nonself discrimination in a computer[C]//2012 IEEE Symposium on Security and Privacy. Piscataway, NJ: IEEE Press, 1994: 202.
[17] Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C]//Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, 1999, 1: 257-267.
[18] Roemer M J, Nwadiogbu E O, Bloor G. Development of diagnostic and prognostic technologies for aerospace health management applications[C]//IEEE Proceedings of Aerospace Conference. Piscataway, NJ: IEEE Press, 2001, 6: 3139-3147.
[19] Timmis J, Neal M, Hunt J. An artificial immune system for data analysis[J]. Biosystems, 2000, 55(1): 143-150.
[20] Xu X M, Wang R G, Hou S L. Intelligence fusion approach to fault detection based on negative selection principle and its application[J]. Systems Engineering and Electronics, 2009, 31(8): 2029-2032 (in Chinese). 徐学邈, 王如根, 侯胜利. 基于反面选择原理的智能融合故障检测模型及其应用[J]. 系统工程与电子技术, 2009, 31(8): 2029-2032. |