| 1 |
李东, 李平岐. 中国航天运输系统发展及未来趋势展望[J]. 前瞻科技, 2022, 1(1): 51-61.
|
|
LI D, LI P Q. Development and future trend of China’s space transportation system[J]. Science and Technology Foresight, 2022, 1(1): 51-61 (in Chinese).
|
| 2 |
王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报, 2021, 42(11): 525049.
|
|
WANG W, XING C Y, FENG W S. State of the art and perspectives of autonomous navigation technology[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525049 (in Chinese).
|
| 3 |
ZHAO H, XIONG Z, SHI L J, et al. A robust filtering algorithm for integrated navigation system of aerospace vehicle in launch inertial coordinate[J]. Aerospace Science and Technology, 2016, 58: 629-640.
|
| 4 |
WANG R, XIONG Z, LIU J Y, et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(4): 698-712.
|
| 5 |
KANG J, XIONG Z, WANG R, et al. Multi-layer fault-tolerant robust filter for integrated navigation in launch inertial coordinate system[J]. Aerospace, 2022, 9(6): 282.
|
| 6 |
KANG J, XIONG Z, WANG R, et al. Resilient multi-source integrated navigation method for aerospace vehicles based on on-line evaluation of redundant information[J]. Aerospace, 2022, 9(7): 333.
|
| 7 |
NING X L, YANG Y Q, FANG J C, et al. The progress of autonomous celestial navigation for deep space spacecraft[J]. Journal of Deep Space Exploration, 2023, 10(2): 99-108.
|
| 8 |
ALKHALAF S. A robust variance information fusion technique for real-time autonomous navigation systems[J]. Measurement, 2021, 179: 109441.
|
| 9 |
GRANTZ A. X-37B orbital test vehicle and derivatives: AIAA-2011-7315[R]. Reston: AIAA, 2011.
|
| 10 |
LÓPEZ-LAGO M, SERNA J, CASADO R, et al. Present and future of air navigation: PBN operations and supporting technologies[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(2): 451-468.
|
| 11 |
LEE S, LEE Y, LEE S, et al. Data-driven capturability analysis for pure proportional navigation guidance considering target maneuver[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1209-1221.
|
| 12 |
PAN C, LIU J, KANG Z W, et al. Solar TDOA/doppler difference joint observation navigation for the approach phase of Mars exploration[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(3): 836-844.
|
| 13 |
WANG R, LIU J Y, XIONG Z, et al. Double-layer fusion algorithm for EGI-based system[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(4): 258-266.
|
| 14 |
MAGREE D, JOHNSON E N. Factored extended Kalman filter for monocular vision-aided inertial navigation[J]. Journal of Aerospace Information Systems, 2016, 13(12): 475-490.
|
| 15 |
VETRELLA A R, FASANO G, ACCARDO D. Satellite and vision-aided sensor fusion for cooperative navigation of unmanned aircraft swarms[J]. Journal of Aerospace Information Systems, 2017, 14(6): 327-344.
|
| 16 |
房建成, 宁晓琳. 天文导航原理及应用[M]. 北京: 北京航空航天大学出版社, 2006: 92-93.
|
|
FANG J C, NING X L. Principles and applications of celestial navigation [M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 92-93 (in Chinese).
|
| 17 |
NING X L, YUAN W P, LIU Y H. A tightly coupled rotational SINS/CNS integrated navigation method for aircraft[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 770-782.
|
| 18 |
刘建业. 导航系统理论与应用[M]. 西安: 西北工业大学出版社, 2010: 366-372.
|
|
LIU J Y. Theory and application of navigation system[M]. Xi’an: Northwestern Polytechnical University Press, 2010: 366-372 (in Chinese).
|
| 19 |
吕建强. 惯性/卫星组合导航参数在线估计方法研究[D]. 北京: 中国运载火箭技术研究院, 2016: 19-20.
|
|
LYU J Q. Research on online estimation method of combined inertial/satellite navigation parameters[D]. Beijing: China Academy of Launch Vehicle Technology, 2016: 19-20 (in Chinese).
|
| 20 |
邵梦晗. 惯性/卫星组合导航状态在线评估与优化[D]. 北京: 中国运载火箭技术研究院, 2019: 36-37.
|
|
SHAO M H. Online evaluation and optimization of INS/GNSS integrated navigation[D]. Beijing: China Academy of Launch Vehicle Technology, 2019: 36-37 (in Chinese).
|