1 |
何锋. 机载网络技术基础[M]. 北京: 国防工业出版社, 2018.
|
|
HE F. Fundamentals of airborne network[M]. Beijing: National Defense Industry Press, 2018 (in Chinese).
|
2 |
JONES K H, GROSS J N. Reducing size, weight, and power (SWaP) of perception systems in small autonomous aerial systems[C]∥14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014.
|
3 |
MAIRAJ A. SWaP reduction: Vital for choice of avionics architecture[C]∥International Conference on Engineering & Emerging Technologies (ICEET-2014). 2014.
|
4 |
DWIVEDI A, ZOPPI S, KELLERER W, et al. Wireless avionics intra-communication (WAIC) QoS measurements of an ultra wideband (UWB) device for low-data rate transmissions[C]∥2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2020: 1-10.
|
5 |
BALTACI A, ZOPPI S, KELLERER W, et al. Evaluation of cellular technologies for high data rate WAIC applications[C]∥2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
|
6 |
REINHARDT A, AGLARGOZ A. Emerging trends in avionics networking[M]∥Advances in aeronautical informatics. Cham: Springer, 2018: 29-40.
|
7 |
FRIEDT J M, GOAVEC-MEROU G, MARTIN G, et al. Passive RADAR acoustic delay line sensor measurement: Demonstration using a WiFi (2.4 GHz) emitter and WAIC-band (4.3 GHz)[C]∥2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). Piscataway: IEEE Press, 2019: 54-61.
|
8 |
DANG D K, MIFDAOUI A, GAYRAUD T. Fly-by-wireless for next generation aircraft: Challenges and potential solutions[C]∥2012 IFIP Wireless Days. Piscataway: IEEE Press, 2013: 1-8.
|
9 |
AS . Guide to avionics data buses[S]. Chicago: Avionic Systems Standardisation Committee(ASSC), 1995: 4.
|
10 |
SZYDLOWSKI C P. CAN specification 2.0: Protocol and implementations[C]∥SAE Technical Paper Series. Warrendale: SAE International, 1992: 921603.
|
11 |
NWADIUGWU W P, KIM D S. Ultrawideband network channel models for next-generation wireless avionic system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 113-129.
|
12 |
JAFARI SONGHORI M, NASIRY J. Organizational structure, subsystem interaction pattern, and misalignments in complex NPD projects[J]. Production and Operations Management, 2020, 29(1): 214-231.
|
13 |
LONG L, SCHWEITZER S. Information and knowledge transfer through archival journals and on-line communities[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
|
14 |
GRAHAM-ROWE D. Fly-by-wireless set for take off[J]. New Scientist, 2009, 203(2724): 20-21.
|
15 |
PARK P, DI MARCO P, NAH J, et al. Wireless avionics intracommunications: A survey of benefits, challenges, and solutions[J]. IEEE Internet of Things Journal, 2021, 8(10): 7745-7767.
|
16 |
REJI P, NATARAJAN K, SHOBHA K R. Performance evaluation of wireless protocols for avionics wireless network[J]. Journal of Aerospace Information Systems, 2020, 17(3): 160-170.
|
17 |
DANG D K, MIFDAOUI A, GAYRAUD T. Design and analysis of UWB-based network for reliable and timely communications in safety-critical avionics[C]∥ 2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014). Piscataway: IEEE Press, 2014: 1-10.
|
18 |
PHAM Q V, FANG F, HA V N, et al. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art[J]. IEEE Access, 2020, 8: 116974-117017.
|
19 |
SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access, 2020, 8: 23022-23040.
|
20 |
LE BOUDEC J Y, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001.
|
21 |
CHARARA H, SCHARBARG J L, ERMONT J, et al. Methods for bounding end-to-end delays on an AFDX network[C]∥18th Euromicro Conference on Real-Time Systems (ECRTS'06). Piscataway: IEEE Press, 2006:202.
|
22 |
CHANG C S, CHIU Y M, SONG W T. On the performance of multiplexing independent regulated inputs[C]∥Proceedings of the 2001 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York: ACM, 2001: 184–193.
|
23 |
SUN F Y, LI L Q, JIANG Y M. Impact of duty cycle on end-to-end performance in a wireless sensor network[C]∥2015 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2015: 1906-1911.
|
24 |
Recommendation ITU-R M. 2083-0. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond [S]. Genève: International Telecommunication Union(ITU), 2015.
|
25 |
何锋, 周璇, 赵长啸, 等. 航空电子系统机载网络实时性能评价技术[J]. 北京航空航天大学学报, 2020, 46(4): 651-665.
|
|
HE F, ZHOU X, ZHAO C X, et al. Real-time performance evaluation technology of airborne network for avionics system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 651-665 (in Chinese).
|
26 |
赵琳, 何锋, 熊华钢. 航空电子AFDX与AVB传输实时性抗干扰对比[J]. 北京航空航天大学学报, 2017, 43(12): 2359-2369.
|
|
ZHAO L, HE F, XIONG H G. Comparison of real-time anti-jamming transmission for avionics AFDX and AVB[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2359-2369 (in Chinese).
|
27 |
LI Z X, UUSITALO M A, SHARIATMADARI H, et al. 5G URLLC: Design challenges and system concepts[C]∥2018 15th International Symposium on Wireless Communication Systems (ISWCS). Piscataway: IEEE Press, 2018: 1-6.
|
28 |
MA S C, CHEN X, LI Z, et al. Performance evaluation of URLLC in 5G based on stochastic network calculus[J]. Mobile Networks and Applications, 2021, 26(3): 1182-1194.
|