Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 429134-429134.
• Material Engineering and Mechanical Manufacturing • Previous Articles
Kuo TIAN(), Zhiyong SUN, Zengcong LI
Received:
2023-06-06
Revised:
2023-06-27
Accepted:
2023-08-14
Online:
2024-04-15
Published:
2023-08-25
Contact:
Kuo TIAN
E-mail:tiankuo@dlut.edu.cn
Supported by:
CLC Number:
Kuo TIAN, Zhiyong SUN, Zengcong LI. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134-429134.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Prediction accuracy and training time of different methods (Axial tension load of 20 000 N)
方法 | RRMSE | R2 | REmax | 训练时间/s |
---|---|---|---|---|
有限元分析 | 0.340 | 0.813 | 18.18% | |
RBF (12 HF) | 0.945 | 0.025 | 52.46% | |
GBDT (54 013 LF) | 0.262 | 0.907 | 11.19% | |
Co-Kriging (12 HF+54 013 LF) | 内存不足 | |||
Co-Kriging (12 HF+3 000 LF) | 0.211 | 0.952 | 10.15% | 1 737 |
ASF-RBF (12 HF+3 000 LF) | 0.293 | 0.904 | 15.39% | 2 |
ASF-RBF (12 HF+54 013 LF) | 0.261 | 0.926 | 12.87% | 2 |
TL-VFSM (12 HF+54 013 LF) | 0.209 | 0.952 | 6.46% | 5 |
DT-SSTM (12 HF+54 013 LF) | 0.144 | 0.974 | 5.56% | 1 |
Table 2
Mises stress results for various methods with different sensor measurement points
传感器编号 | Mises应力/MPa | 数据源 | |||||
---|---|---|---|---|---|---|---|
试验 | 有限元 | ASF-RBF | Co-Kriging | TL-VFSM | DT-SSTM | ||
No.01 | 28.16 | 30.55 | 29.57 | 31.37 | 26.57 | 29.84 | 测试集 |
No.02 | 40.58 | 38.79 | 40.28 | 41.61 | 34.67 | 40.20 | 测试集 |
No.03 | 40.74 | 38.75 | 40.53 | 39.94 | 34.95 | 40.08 | 测试集 |
No.04 | 36.02 | 36.32 | 36.88 | 36.12 | 32.83 | 37.59 | 测试集 |
No.05 | 26.72 | 35.32 | 27.39 | 25.90 | 31.96 | 28.75 | 测试集 |
No.06 | 33.99 | 42.32 | 34.90 | 33.91 | 38.14 | 35.53 | 测试集 |
No.07 | 40.93 | 42.25 | 40.83 | 41.39 | 38.27 | 40.64 | 测试集 |
No.08 | 47.85 | 60.56 | 54.50 | 51.88 | 54.28 | 44.92 | 测试集 |
No.09 | 92.10 | 108.84 | 103.95 | 101.45 | 98.05 | 97.27 | 测试集 |
No.10 | 66.10 | 77.84 | 73.25 | 71.93 | 70.90 | 70.77 | 测试集 |
No.11 | 82.77 | 93.67 | 91.35 | 89.72 | 83.65 | 85.97 | 测试集 |
No.12 | 61.79 | 70.26 | 69.27 | 68.26 | 63.70 | 68.94 | 测试集 |
No.13 | 45.64 | 47.62 | 45.64 | 45.64 | 43.70 | 45.93 | 训练集 |
No.14 | 42.12 | 49.03 | 42.12 | 42.12 | 44.95 | 41.65 | 训练集 |
No.15 | 29.07 | 36.37 | 29.07 | 29.07 | 32.96 | 28.98 | 训练集 |
No.16 | 48.74 | 47.99 | 48.74 | 48.74 | 43.35 | 49.37 | 训练集 |
No.17 | 31.07 | 30.50 | 31.07 | 31.07 | 27.62 | 31.70 | 训练集 |
No.18 | 31.66 | 30.39 | 31.66 | 31.66 | 27.52 | 31.44 | 训练集 |
No.19 | 33.14 | 30.65 | 33.14 | 33.14 | 27.60 | 31.70 | 训练集 |
No.20 | 20.69 | 28.60 | 20.69 | 20.69 | 26.68 | 22.45 | 训练集 |
No.21 | 47.00 | 49.32 | 47.00 | 47.00 | 44.83 | 47.10 | 训练集 |
No.22 | 32.88 | 28.98 | 32.88 | 32.88 | 26.10 | 28.84 | 训练集 |
No.23 | 34.53 | 35.30 | 34.53 | 34.53 | 32.06 | 35.57 | 训练集 |
No.24 | 31.40 | 37.66 | 31.40 | 31.40 | 34.03 | 31.09 | 训练集 |
Table 3
Prediction accuracy and training time of different methods (Axial tension load of 22 000 N)
方法 | RRMSE | R2 | REmax | 训练时间/s |
---|---|---|---|---|
有限元分析 | 0.349 | 0.809 | 17.53% | |
Co-Kriging (12 HF+3 000 LF) | 0.279 | 0.915 | 11.52% | 2 191 |
ASF-RBF (12 HF+54 013 LF) | 0.288 | 0.909 | 12.99% | 2 |
TL-VFSM (12 HF+54 013 LF) | 0.242 | 0.936 | 9.32% | 5 |
DT-SSTM (12 HF+54 013 LF) | 0.174 | 0.960 | 9.04% | 1 |
1 | JIN S S, KIM S T, PARK Y H. Combining point and distributed strain sensor for complementary data-fusion: A multi-fidelity approach[J]. Mechanical Systems and Signal Processing, 2021, 157: 107725. |
2 | GUIVARCH D, MERMOZ E, MARINO Y, et al. Creation of helicopter dynamic systems digital twin using multibody simulations[J]. CIRP Annals, 2019, 68(1): 133-136. |
3 | LUO W, HU T, YE Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974. |
4 | LI L, LEI B, MAO C. Digital twin in smart manufacturing[J]. Journal of Industrial Information Integration, 2022, 26: 100289. |
5 | LI C, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. |
6 | LIM K Y H, ZHENG P, CHEN C H, et al. A digital twin-enhanced system for engineering product family design and optimization[J]. Journal of Manufacturing Systems, 2020, 57: 82-93. |
7 | TAO F, ZHANG H, LIU A, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. |
8 | 宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325. |
SONG X G, LAI X N, HE X W, et al. Key technologies of shape-performance integrated digital twin for major equipment [J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese). | |
9 | WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703. |
10 | XIA M, SHAO H, WILLIAMS D, et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning[J]. Reliability Engineering & System Safety, 2021, 215: 107938. |
11 | 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. |
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Journal of Aeronautics, 2021, 42(3): 023981 (in Chinese). | |
12 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese). | |
13 | TIAN K, LI Z C, HUANG L, et al. Enhanced variable-fidelity surrogate-based optimization framework by Gaussian process regression and fuzzy clustering[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113045. |
14 | LI Z C, ZHANG S, LI H Q, et al. On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks[J]. Advanced Engineering Informatics, 2022, 53: 101689. |
15 | GHOSH M, WU L, HAO Q, et al. A random forest with multi-fidelity Gaussian process leaves for modeling multi-fidelity data with heterogeneity[J]. Computers & Industrial Engineering, 2022, 174: 108746. |
16 | CHEN J, MENG C, GAO Y, et al. Multi-fidelity neural optimization machine for Digital Twins[J]. Structural and Multidisciplinary Optimization, 2022, 65(12): 1-15. |
17 | LAI X, HE X, PANG Y, et al. A scalable digital twin framework based on a novel adaptive ensemble surrogate model[J]. Journal of Mechanical Design, 2023, 145(2): 021701. |
18 | LI K, WANG S, LIU Y, et al. An integrated surrogate modeling method for fusing noisy and noise-free data[J]. Journal of Mechanical Design, 2022, 146(6): 061701. |
19 | CAWLEY G C, TALBOT N L C. On over-fitting in model selection and subsequent selection bias in performance evaluation[J]. The Journal of Machine Learning Research, 2010, 11: 2079-2107. |
20 | NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21. |
21 | KRSTAJIC D, BUTUROVIC L J, LEAHY D E, et al. Cross-validation pitfalls when selecting and assessing regression and classification models[J]. Journal of Cheminformatics, 2014, 6(1): 1-15. |
22 | SATAPATHY S K, BHOI A K, LOGANATHAN D, et al. Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal[J]. Biomedical Signal Processing and Control, 2021, 69: 102898. |
23 | GANAIE M A, HU M, MALIK A K, et al. Ensemble deep learning: A review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105151. |
24 | TERRAULT N A, HASSANEIN T I. Management of the patient with SVR[J]. Journal of Hepatology, 2016, 65(1): S120-S129. |
25 | LI H Q, LI Z C, CHENG Z Z, et al. A data-driven modelling and optimization framework for variable-thickness integrally stiffened shells[J]. Aerospace Science and Technology, 2022, 129: 107839. |
26 | HAO W Q, TAN L, YANG X G, et al. A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace[J]. International Journal of Fatigue, 2023, 170: 107536. |
27 | POH C Q X, UBEYNARAYANA C U, GOH Y M. Safety leading indicators for construction sites: A machine learning approach[J]. Automation in Construction, 2018, 93: 375-386. |
28 | TIAN K, LI Z C, ZHANG J X, et al. Transfer learning based variable-fidelity surrogate model for shell buckling prediction[J]. Composite Structures, 2021, 273: 114285. |
29 | SONG X G, LV L Y, SUN W, et al. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization, 2019, 60: 965-981. |
30 | ZHOU Q, SHAO X Y, JIANG P, et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics, 2016, 30(3): 283-297. |
31 | TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133: 216-225. |
[1] | Hua YANG, Shusheng CHEN, Zhenghong GAO, Quanfeng JIANG, Wei ZHANG. Rotor aerodynamic data fusion based on Bayesian framework [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960-128960. |
[2] | Hailang SONG, Jiandong ZHANG, Guoqing SHI, Qiming YANG, Yaozhong ZHANG. Comprehensive evaluation techniques and methods for flight test of avionics fire control system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529687-529687. |
[3] | Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693. |
[4] | Huaijie ZHANG, Jingya MA, Haoyuan LIU, Pin GUO, Huichao DENG, Kun XU, Xilun DING. Indoor positioning technology of multi⁃rotor flying robot based on visual-inertial fusion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 426964-426964. |
[5] | Weimin WANG, Dongfang HU. Review on non⁃contact dynamic stress measurement methods of rotating blades [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 28516-028516. |
[6] | Jiaqi HE, Weida WU, Yangjun LUO. A robust shape control method for space-borne antenna reflectors based on P-CS uncertainty quantification model and digital twin [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328343-328343. |
[7] | Chenghao GUO, Jinsong YU, Yue SONG, Qi YIN, Jiaxuan LI. Application of digital twin⁃based aircraft landing gear health management technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227629-227629. |
[8] | Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851-025851. |
[9] | CAO Ming, WANG Peng, ZUO Hongfu, ZENG Haijun, SUN Jianzhong, YANG Weidong, WEI Fang, CHEN Xuefeng. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625574-625574. |
[10] | YUE Caixu, ZHANG Juntao, LIU Xianli, CHEN Zhitao, Steven Y. LIANG, Lihui WANG. Research progress on machining deformation of thin-walled parts in milling process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525164-525164. |
[11] | LEI Shiying, SUN Jianzhong, LIU He. Cumulative damage index model and service reliability evaluation of turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225064-225064. |
[12] | ZHANG Weiwei, KOU Jiaqing, LIU Yilang. Prospect of artificial intelligence empowered fluid mechanics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524689-524689. |
[13] | DONG Leiting, ZHOU Xuan, ZHAO Fubin, HE Shuangxin, LU Zhiyuan, FENG Jianmin. Key technologies for modeling and simulation of airframe digital twin [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 23981-023981. |
[14] | WANG Wei, ZHAO Minrui, GAO Hongni, ZHU Shuai, QU Jue. Human-computer interaction: Intention recognition based on EEG and eye tracking [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324290-324290. |
[15] | MENG Songhe, YE Yumei, YANG Qiang, HUANG Zhen, XIE Weihua. Digital twin and its aerospace applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 23615-023615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341