Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 429134.
• Material Engineering and Mechanical Manufacturing • Previous Articles
Kuo TIAN(
), Zhiyong SUN, Zengcong LI
Received:2023-06-06
Revised:2023-06-27
Accepted:2023-08-14
Online:2024-04-15
Published:2023-08-25
Contact:
Kuo TIAN
E-mail:tiankuo@dlut.edu.cn
Supported by:CLC Number:
Kuo TIAN, Zhiyong SUN, Zengcong LI. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Prediction accuracy and training time of different methods (Axial tension load of 20 000 N)
| 方法 | RRMSE | R2 | REmax | 训练时间/s |
|---|---|---|---|---|
| 有限元分析 | 0.340 | 0.813 | 18.18% | |
| RBF (12 HF) | 0.945 | 0.025 | 52.46% | |
| GBDT (54 013 LF) | 0.262 | 0.907 | 11.19% | |
Co-Kriging (12 HF+54 013 LF) | 内存不足 | |||
Co-Kriging (12 HF+3 000 LF) | 0.211 | 0.952 | 10.15% | 1 737 |
ASF-RBF (12 HF+3 000 LF) | 0.293 | 0.904 | 15.39% | 2 |
ASF-RBF (12 HF+54 013 LF) | 0.261 | 0.926 | 12.87% | 2 |
TL-VFSM (12 HF+54 013 LF) | 0.209 | 0.952 | 6.46% | 5 |
DT-SSTM (12 HF+54 013 LF) | 0.144 | 0.974 | 5.56% | 1 |
Table 2
Mises stress results for various methods with different sensor measurement points
| 传感器编号 | Mises应力/MPa | 数据源 | |||||
|---|---|---|---|---|---|---|---|
| 试验 | 有限元 | ASF-RBF | Co-Kriging | TL-VFSM | DT-SSTM | ||
| No.01 | 28.16 | 30.55 | 29.57 | 31.37 | 26.57 | 29.84 | 测试集 |
| No.02 | 40.58 | 38.79 | 40.28 | 41.61 | 34.67 | 40.20 | 测试集 |
| No.03 | 40.74 | 38.75 | 40.53 | 39.94 | 34.95 | 40.08 | 测试集 |
| No.04 | 36.02 | 36.32 | 36.88 | 36.12 | 32.83 | 37.59 | 测试集 |
| No.05 | 26.72 | 35.32 | 27.39 | 25.90 | 31.96 | 28.75 | 测试集 |
| No.06 | 33.99 | 42.32 | 34.90 | 33.91 | 38.14 | 35.53 | 测试集 |
| No.07 | 40.93 | 42.25 | 40.83 | 41.39 | 38.27 | 40.64 | 测试集 |
| No.08 | 47.85 | 60.56 | 54.50 | 51.88 | 54.28 | 44.92 | 测试集 |
| No.09 | 92.10 | 108.84 | 103.95 | 101.45 | 98.05 | 97.27 | 测试集 |
| No.10 | 66.10 | 77.84 | 73.25 | 71.93 | 70.90 | 70.77 | 测试集 |
| No.11 | 82.77 | 93.67 | 91.35 | 89.72 | 83.65 | 85.97 | 测试集 |
| No.12 | 61.79 | 70.26 | 69.27 | 68.26 | 63.70 | 68.94 | 测试集 |
| No.13 | 45.64 | 47.62 | 45.64 | 45.64 | 43.70 | 45.93 | 训练集 |
| No.14 | 42.12 | 49.03 | 42.12 | 42.12 | 44.95 | 41.65 | 训练集 |
| No.15 | 29.07 | 36.37 | 29.07 | 29.07 | 32.96 | 28.98 | 训练集 |
| No.16 | 48.74 | 47.99 | 48.74 | 48.74 | 43.35 | 49.37 | 训练集 |
| No.17 | 31.07 | 30.50 | 31.07 | 31.07 | 27.62 | 31.70 | 训练集 |
| No.18 | 31.66 | 30.39 | 31.66 | 31.66 | 27.52 | 31.44 | 训练集 |
| No.19 | 33.14 | 30.65 | 33.14 | 33.14 | 27.60 | 31.70 | 训练集 |
| No.20 | 20.69 | 28.60 | 20.69 | 20.69 | 26.68 | 22.45 | 训练集 |
| No.21 | 47.00 | 49.32 | 47.00 | 47.00 | 44.83 | 47.10 | 训练集 |
| No.22 | 32.88 | 28.98 | 32.88 | 32.88 | 26.10 | 28.84 | 训练集 |
| No.23 | 34.53 | 35.30 | 34.53 | 34.53 | 32.06 | 35.57 | 训练集 |
| No.24 | 31.40 | 37.66 | 31.40 | 31.40 | 34.03 | 31.09 | 训练集 |
Table 3
Prediction accuracy and training time of different methods (Axial tension load of 22 000 N)
| 方法 | RRMSE | R2 | REmax | 训练时间/s |
|---|---|---|---|---|
| 有限元分析 | 0.349 | 0.809 | 17.53% | |
Co-Kriging (12 HF+3 000 LF) | 0.279 | 0.915 | 11.52% | 2 191 |
ASF-RBF (12 HF+54 013 LF) | 0.288 | 0.909 | 12.99% | 2 |
TL-VFSM (12 HF+54 013 LF) | 0.242 | 0.936 | 9.32% | 5 |
DT-SSTM (12 HF+54 013 LF) | 0.174 | 0.960 | 9.04% | 1 |
| 1 | JIN S S, KIM S T, PARK Y H. Combining point and distributed strain sensor for complementary data-fusion: A multi-fidelity approach[J]. Mechanical Systems and Signal Processing, 2021, 157: 107725. |
| 2 | GUIVARCH D, MERMOZ E, MARINO Y, et al. Creation of helicopter dynamic systems digital twin using multibody simulations[J]. CIRP Annals, 2019, 68(1): 133-136. |
| 3 | LUO W, HU T, YE Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974. |
| 4 | LI L, LEI B, MAO C. Digital twin in smart manufacturing[J]. Journal of Industrial Information Integration, 2022, 26: 100289. |
| 5 | LI C, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. |
| 6 | LIM K Y H, ZHENG P, CHEN C H, et al. A digital twin-enhanced system for engineering product family design and optimization[J]. Journal of Manufacturing Systems, 2020, 57: 82-93. |
| 7 | TAO F, ZHANG H, LIU A, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. |
| 8 | 宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325. |
| SONG X G, LAI X N, HE X W, et al. Key technologies of shape-performance integrated digital twin for major equipment [J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese). | |
| 9 | WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703. |
| 10 | XIA M, SHAO H, WILLIAMS D, et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning[J]. Reliability Engineering & System Safety, 2021, 215: 107938. |
| 11 | 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. |
| DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Journal of Aeronautics, 2021, 42(3): 023981 (in Chinese). | |
| 12 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
| LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese). | |
| 13 | TIAN K, LI Z C, HUANG L, et al. Enhanced variable-fidelity surrogate-based optimization framework by Gaussian process regression and fuzzy clustering[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113045. |
| 14 | LI Z C, ZHANG S, LI H Q, et al. On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks[J]. Advanced Engineering Informatics, 2022, 53: 101689. |
| 15 | GHOSH M, WU L, HAO Q, et al. A random forest with multi-fidelity Gaussian process leaves for modeling multi-fidelity data with heterogeneity[J]. Computers & Industrial Engineering, 2022, 174: 108746. |
| 16 | CHEN J, MENG C, GAO Y, et al. Multi-fidelity neural optimization machine for Digital Twins[J]. Structural and Multidisciplinary Optimization, 2022, 65(12): 1-15. |
| 17 | LAI X, HE X, PANG Y, et al. A scalable digital twin framework based on a novel adaptive ensemble surrogate model[J]. Journal of Mechanical Design, 2023, 145(2): 021701. |
| 18 | LI K, WANG S, LIU Y, et al. An integrated surrogate modeling method for fusing noisy and noise-free data[J]. Journal of Mechanical Design, 2022, 146(6): 061701. |
| 19 | CAWLEY G C, TALBOT N L C. On over-fitting in model selection and subsequent selection bias in performance evaluation[J]. The Journal of Machine Learning Research, 2010, 11: 2079-2107. |
| 20 | NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21. |
| 21 | KRSTAJIC D, BUTUROVIC L J, LEAHY D E, et al. Cross-validation pitfalls when selecting and assessing regression and classification models[J]. Journal of Cheminformatics, 2014, 6(1): 1-15. |
| 22 | SATAPATHY S K, BHOI A K, LOGANATHAN D, et al. Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal[J]. Biomedical Signal Processing and Control, 2021, 69: 102898. |
| 23 | GANAIE M A, HU M, MALIK A K, et al. Ensemble deep learning: A review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105151. |
| 24 | TERRAULT N A, HASSANEIN T I. Management of the patient with SVR[J]. Journal of Hepatology, 2016, 65(1): S120-S129. |
| 25 | LI H Q, LI Z C, CHENG Z Z, et al. A data-driven modelling and optimization framework for variable-thickness integrally stiffened shells[J]. Aerospace Science and Technology, 2022, 129: 107839. |
| 26 | HAO W Q, TAN L, YANG X G, et al. A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace[J]. International Journal of Fatigue, 2023, 170: 107536. |
| 27 | POH C Q X, UBEYNARAYANA C U, GOH Y M. Safety leading indicators for construction sites: A machine learning approach[J]. Automation in Construction, 2018, 93: 375-386. |
| 28 | TIAN K, LI Z C, ZHANG J X, et al. Transfer learning based variable-fidelity surrogate model for shell buckling prediction[J]. Composite Structures, 2021, 273: 114285. |
| 29 | SONG X G, LV L Y, SUN W, et al. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization, 2019, 60: 965-981. |
| 30 | ZHOU Q, SHAO X Y, JIANG P, et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics, 2016, 30(3): 283-297. |
| 31 | TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133: 216-225. |
| [1] | Yingjie SHI, Binchao LIU, Songsong LU, Liang CHEN, Hai SHANG, Rui BAO. Neural network model for wing strain-load relationship based on fusion of real and virtual data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530921-530921. |
| [2] | Yiwei HUANG, Yibin GENG, Tianhe GAO, Xuanwei HU, Yuan WANG, Hongyan MA, Kuo TIAN. Digital twin driven high precision reconstruction method for full-field deformation of structure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530967-530967. |
| [3] | Dingqiang DAI, Xuan ZHOU, Leiting DONG, Xiasheng SUN. Research progress and prospects of digital engineering and digital twin in field of aeronautical fatigue and structural integrity [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531022-531022. |
| [4] | Shangyu LI, Hang FENG, Junquan CHEN, Bin CHEN, Dan MEI. A design architecture and conceptual modeling approach for digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531118-531118. |
| [5] | Junqi LEI, Yuehua CHENG, Bin JIANG, Cheng XU, Guili XU, Tianyu SUN. Digital-twin’s modelling and dynamic adjustment mechanism of rudder-loop-system under fault conditions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531273-531273. |
| [6] | Liang CHEN, Lei HUANG, Yuxuan GU, Cong GUO, Kexin LIN, Yu GUAN, Jian SONG. Twinning technology of key part load based on flight parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531292-531292. |
| [7] | Chengjie GUO, Dian XU, Jinbao LI, Chaoyu CHENG, Shuochang GUO, Rui LI. Stress characterization of high-temperature digital image correlation experiments based on a data fusion-knowledge transfer method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531574-531574. |
| [8] | Yuxuan GU, Cong GUO, Lei HUANG, Yifei DONG, Hongda DONG, Zhilun DENG. Refined management of fleet life driven by digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531290-531290. |
| [9] | Yinxuan ZHANG, Qi ZHANG, Zhenyong XU, Linshu MENG. Predicting method of aircraft mechanical response based on residual neural networks [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531295-531295. |
| [10] | Ruoyao XIAO, Lianyu ZHENG, Jian ZHOU, Siru ZHAO, Jieru ZHANG, Yuwu CHEN. Online optimization method for positioning accuracy in cylindrical components aligning based on digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531978-531978. |
| [11] | Jialiang HU, Jiangpeng WU, Sixu HUO, Yidi GAO, Hua ZHENG. Modal parameter estimation based on reconstruction of digital twin sweep data in flutter flight test [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531602-531602. |
| [12] | Pengfei WANG, Lifang ZENG, Xueming SHAO, Jun LI. Multi-source data fusion modeling method for aerodynamic load of aircraft wing based on pre-training and fine-tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532297-532297. |
| [13] | Yifei WANG, Geyong CAO, Yang CAO, Xiaojun WANG. Uncertainty technologies in aircraft digital strength twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532408-532408. |
| [14] | Liang CHEN, Fanxing MENG, Chengbo WANG, Yinxuan ZHANG, Linshu MENG. Development and application of digital twins technology in aircraft strength design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532252-532252. |
| [15] | Ran ZHUO, Chuliang YAN. A key component in digital twin of aircraft structures: Multi-dimensional flight parameter measurements [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532375-532375. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

