ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (4): 525164-525164.doi: 10.7527/S1000-6893.2021.25164
• Reviews • Previous Articles Next Articles
YUE Caixu1, ZHANG Juntao1, LIU Xianli1, CHEN Zhitao1, Steven Y. LIANG2, Lihui WANG2
Received:
2020-12-25
Revised:
2021-02-06
Published:
2021-05-24
Supported by:
CLC Number:
YUE Caixu, ZHANG Juntao, LIU Xianli, CHEN Zhitao, Steven Y. LIANG, Lihui WANG. Research progress on machining deformation of thin-walled parts in milling process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525164-525164.
[1] 田海东. 铝合金薄壁结构件铣削变形预测与工艺参数优化[D]. 济南:山东大学, 2020. TIAN H D. Prediction of milling deformation and optimization of process parameters of aluminum alloy thin-walled structural parts[D]. Jinan:Shandong University, 2020(in Chinese). [2] 章熠鑫. 钛合金薄壁件加工变形控制工艺基础研究[D]. 南京:南京航空航天大学, 2013:12-14. ZHANG Y X. Process research on control the deformation of titanium alloy thin-wall parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:12-14(in Chinese). [3] 李跃. 薄壁零件高速铣削工艺与仿真研究[D]. 沈阳:东北大学, 2008:13-14. LI Y. Study on technology and simulation for high-speed milling of thin-walled workpiece[D]. Shenyang:Northeastern University, 2008:13-14(in Chinese). [4] 王颖. 薄壁件高速铣削加工变形误差预测及有限元分析[D]. 天津:河北工业大学, 2013:8-9. WANG Y. The error prediction and finite element analysis of thin-walled parts machining deformation in high speed milling[D]. Tianjin:Hebei University of Technology, 2013:8-9(in Chinese). [5] LI X Y, LI L, YANG Y F, et al. Machining deformation of single-sided component based on finishing allowance optimization[J]. Chinese Journal of Aeronautics, 2020, 33(9):2434-2444. [6] 潘和林. 钛合金薄壁件铣削变形的预测与控制[D]. 济南:山东大学, 2016:14-15. PAN H L. Deflection prediction and control in milling of thin-wall titanium alloy components[D]. Jinan:Shandong University, 2016:14-15(in Chinese). [7] 于春涛. 航空薄壁构件加工变形研究[D]. 上海:上海交通大学, 2015:10-13. YU C T. Reaserch on deformation method of aerospace thin-walled structures[D]. Shanghai:Shanghai Jiao Tong University, 2015:10-13(in Chinese). [8] 董辉跃. 航空整体结构件加工过程的数值仿真[D]. 杭州:浙江大学, 2004:18-19. DONG H Y. Machining process simulation of aerospace monolithic component[D]. Hangzhou:Zhejiang University, 2004:18-19(in Chinese). [9] 秦国华, 吴竹溪, 张卫红. 薄壁件的装夹变形机理分析与控制技术[J]. 机械工程学报, 2007, 43(4):211-216, 223. QIN G H, WU Z X, ZHANG W H. Analysis and control technique of fixturing deformation mechanism of thin-walled workpiece[J]. Chinese Journal of Mechanical Engineering, 2007, 43(4):211-216, 223(in Chinese). [10] 孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]. 杭州:浙江大学, 2003:17-19. SUN J. Study on correction theory and method for distorted aeronautical monolithic component due to NC machining[D]. Hangzhou:Zhejiang University, 2003:17-19(in Chinese). [11] 张茹. 薄壁件切削变形仿真与实验研究[D]. 济南:山东建筑大学, 2016:3-5. ZHANG R. Simulation and experimental study of cutting deformation of thin-walled parts[D]. Jinan:Shandong Jianzhu University, 2016:3-5(in Chinese). [12] 张峥. 飞机弱刚性铝合金结构件的残余应力和加工变形控制技术研究[D]. 南京:南京航空航天大学, 2016:19-23. ZHANG Z. Research on residual stress and machining distortion of aeronautic weak rigidity in aluminum structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:19-23(in Chinese). [13] 李目. 基于变形控制的薄壁件铣削加工参数优化及仿真研究[D]. 南京:南京航空航天大学, 2010:12-13. LI M. Research on the optimization of milling parameters and simulation of thin-walled parts based on the machining errors control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:12-13(in Chinese). [14] 马伟. 航空铝合金薄壁件切削过程及加工变形仿真分析[D]. 长春:吉林大学, 2020:14-15. MA W. Simulation analysis of cutting process and machining deformation of aviation aluminum alloy thin-walled parts[D]. Changchun:Jilin University, 2020:14-15(in Chinese). [15] DING T C, ZHANG S, WANG Y W, et al. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(1):45-55. [16] ZHAO C, FU T G, LIU Y B, et al. Different impact on the stability limits caused by the selection of milling force coefficient under the state of high-speed milling[J]. International Journal of Hybrid Information Technology, 2015, 8(8):153-160. [17] 王立涛, 柯映林, 黄志刚. 航空铝合金7050-T7451铣削力模型的实验研究[J]. 中国机械工程, 2003, 14(19):1684-1686. WANG L T, KE Y L, HUANG Z G. Experimental study on milling-force model in aviation aluminum-alloy[J]. China Mechanical Engineering, 2003, 14(19):1684-1686(in Chinese). [18] 郭魂. 航空多框整体结构件铣削变形机理与预测分析研究[D]. 南京:南京航空航天大学, 2005:24-35. GUO H. Study on mechanism and prediction analysis of machining distortion for aero-multi-frame monolithic structure parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:24-35(in Chinese). [19] 秦旭达, 赵剑波, 张剑刚, 等. 基于回归法的钛合金(Ti-6Al-4V)插铣铣削力建模分析[J]. 北京工业大学学报, 2006, 32(8):737-740. QIN X D, ZHAO J B, ZHANG J G, et al. Analysis and modeling about milling force in plunge milling for Ti-6AI-4V based on regression[J]. Journal of Beijing University of Technology, 2006, 32(8):737-740(in Chinese). [20] KIM G M, CHU C N. Mean cutting force prediction in ball-end milling using force map method[J]. Journal of Materials Processing Technology, 2004, 146(3):303-310. [21] KATTAN I A, VENKATESH V C, CURRIE K R. A comparative study of the effect of tool geometry with negative SCEAs on machining parameters[J]. International Journal of Production Research, 1998, 36(4):909-938. [22] FANG N. An improved model for oblique cutting and its application to chip-control research[J]. Journal of Materials Processing Technology, 1998, 79(1-3):79-85. [23] WANG J J J, LIANG S Y, BOOK W J. Convolution analysis of milling force pulsation[J]. Journal of Engineering for Industry, 1994, 116(1):17-25. [24] LI H Z, LI X P. Milling force prediction using a dynamic shear length model[J]. International Journal of Machine Tools and Manufacture, 2002, 42(2):277-286. [25] TSAI C L, LIAO Y S. Prediction of cutting forces in ball-end milling by means of geometric analysis[J]. Journal of Materials Processing Technology, 2008, 205(1-3):24-33. [26] FU Z T, ZHANG X M, WANG X L, et al. Analytical modeling of chatter vibration in orthogonal cutting using a predictive force model[J]. International Journal of Mechanical Sciences, 2014, 88:145-153. [27] 周鑫, 李迎光, 刘浩, 等. 基于特征的飞机复杂结构件切削力快速预测与评价方法[J]. 中国机械工程, 2015, 26(7):886-891. ZHOU X, LI Y G, LIU H, et al. A feature-based cutting force fast prediction and evaluation for complex aircraft structure parts[J]. China Mechanical Engineering, 2015, 26(7):886-891(in Chinese). [28] 罗智文, 赵文祥, 焦黎, 等. 基于斜角切削的曲线端铣切削力建模[J]. 机械工程学报, 2016, 52(9):184-192. LUO Z W, ZHAO W X, JIAO L, et al. Cutting force modeling in end milling of curved geometries based on oblique cutting process[J]. Journal of Mechanical Engineering, 2016, 52(9):184-192(in Chinese). [29] 卢泽生, 杨亮. 精密超声振动切削频率对切削力影响规律的研究与仿真[J]. 航空精密制造技术, 2006, 42(5):10-14. LU Z S, YANG L. Theoretical analysis and simulation of the effect of frequency on cutting force in precision vibration machining[J]. Aviation Precision Manufacturing Technology, 2006, 42(5):10-14(in Chinese). [30] MARTELLOTTI M E. An analysis of the milling process[J]. Transactions of the ASME, 1941, 63:667-700. [31] FU H J, DEVOR R E, KAPOOR S G. A mechanistic model for the prediction of the force system in face milling operations[J]. Journal of Engineering for Industry, 1984, 106(1):81-88. [32] 王保升. 瞬时铣削力模型参数辨识及其试验研究[D].镇江:江苏大学, 2011:25-42. WANG B S. Parameters identification of instantaneous milling force model and its experimental investigation[D]. Zhenjiang:Jiangsu University, 2011:25-42(in Chinese). [33] LEE P, ALTINTAŞ Y. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(9):1059-1072. [34] ALTINTAS Y, SPENCE A, TLUSTY J. End milling force algorithms for CAD systems[J]. CIRP Annals, 1991, 40(1):31-34. [35] AZEEM A, FENG H Y, WANG L H. Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(2-3):291-298. [36] KIM G M, CHO P J, CHU C N. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools and Manufacture, 2000, 40(2):277-291. [37] 张臣, 周儒荣, 庄海军, 等. 基于Z-map模型的球头铣刀铣削力建模与仿真[J]. 航空学报, 2006, 27(2):347-352. ZHANG C, ZHOU R R, ZHUANG H J, et al. Modeling and simulation of ball-end milling forces based on Z-map model[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2):347-352(in Chinese). [38] 顾红欣. 高速铣削过程铣削力建模与仿真及实验研究[D]. 天津:天津大学, 2007:18-38. GU H X. Milling force modeling, simulation and experimental study of high speed milling[D]. Tianjin:Tianjin University, 2007:18-38(in Chinese). [39] YANG M Y, PARK H. The prediction of cutting force in ball-end milling[J]. International Journal of Machine Tools and Manufacture, 1991, 31(1):45-54. [40] 关立文, 赵肖, 王立平. 基于次摆线轨迹的铣削层厚度模型[J]. 清华大学学报(自然科学版), 2017, 57(11):1185-1189. GUAN L W, ZHAO X, WANG L P. Milling-layer thickness model based on a trochoid trajectory[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(11):1185-1189(in Chinese). [41] SHARMA V S, DHIMAN S, SEHGAL R, et al. Estimation of cutting forces and surface roughness for hard turning using neural networks[J]. Journal of Intelligent Manufacturing, 2008, 19(4):473-483. [42] 赵寿玲. BP神经网络结构优化方法的研究及应用[D]. 苏州:苏州大学, 2010:15-33. ZHAO S L. Researches and application on the structure optimization of the BP neural networks[D]. Suzhou:Soochow University, 2010:15-33(in Chinese). [43] ZHENG J X, ZHANG M J, MENG Q X. Tool cutting force modeling in high speed milling using PSO-BP neural network[J]. Key Engineering Materials, 2008, 375-376:515-519. [44] FARAHNAKIAN M, RAZFAR M R, MOGHRI M, et al. The selection of milling parameters by the PSO-based neural network modeling method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1):49-60. [45] HAO W S, ZHU X S, LI X F, et al. Prediction of cutting force for self-propelled rotary tool using artificial neural networks[J]. Journal of Materials Processing Technology, 2006, 180(1-3):23-29. [46] SAFFAR R J, RAZFAR M R, ZAREI O, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory, 2008, 16(10):1677-1688. [47] 张平. 7055铝合金表面粗糙度和切削力模型构建及有限元分析[D]. 湘潭:湖南科技大学, 2015:22-37. ZHANG P. 7055 aluminum alloy surface roughness and cutting force model and finite element simulation[D]. Xiangtan:Hunan University of Science and Technology, 2015:22-37(in Chinese). [48] 刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16):45-61. LIU X L, LIU Q, YUE C X, et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering, 2018, 54(16):45-61(in Chinese). [49] 韩冰. 航空薄壁结构零件加工变形的有限元仿真[D]. 天津:天津大学, 2012:9-12. HAN B. Simulation on deflection of aeronautical thin-wall workpiece by FE model[D]. Tianjin:Tianjin University, 2012:9-12(in Chinese). [50] SHIRASE K, ALTINTAŞ Y. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end Mills[J]. International Journal of Machine Tools and Manufacture, 1996, 36(5):567-584. [51] RATCHEV S, GOVENDER E, NIKOV S, et al. Force and deflection modelling in milling of low-rigidity complex parts[J]. Journal of Materials Processing Technology, 2003, 143-144:796-801. [52] RATCHEV S, LIU S, HUANG W, et al. A flexible force model for end milling of low-rigidity parts[J]. Journal of Materials Processing Technology, 2004, 153-154:134-138. [53] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5):542-551. [54] BUDAK E, ALTINTAS Y. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools and Manufacture, 1995, 35(3):459-476. [55] TSAI J S, LIAO C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94(2-3):235-246. [56] LIU S M, SHAO X D, GE X B, et al. Simulation of the deformation caused by the machining cutting force on thin-walled deep cavity parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9):3503-3517. [57] WU G, LI G X, PAN W C, et al. A prediction model for the milling of thin-wall parts considering thermal-mechanical coupling and tool wear[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11):4645-4659. [58] 王志刚, 何宁, 武凯, 等. 薄壁零件加工变形分析及控制方案[J]. 中国机械工程, 2002, 13(2):30-33. WANG Z G, HE N, WU K. Analysis and control approach for machining deflection of thin-walled work-piece[J]. China Mechanical Engineering, 2002, 13(2):30-33(in Chinese). [59] 万敏. 薄壁件周铣加工过程中表面静态误差预测关键技术研究[D]. 西安:西北工业大学, 2005:4-45. WAN M. Numerical prediction of static form errors in the peripheral milling of thin-walled workpiece[D]. Xi'an:Northwestern Polytechnical University, 2005:4-45(in Chinese). [60] 康永刚, 王仲奇, 姜澄宇. 一种快速有效的薄壁件加工表面误差预测算法[J]. 航空学报, 2007, 28(5):1262-1267. KANG Y G, WANG Z Q, JIANG C Y. An efficient algorithm for calculations of surface errors in peripheral milling[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1262-1267(in Chinese). [61] WANG L Y, HUANG H H, WEST R W, et al. A model of deformation of thin-wall surface parts during milling machining process[J]. Journal of Central South University, 2018, 25(5):1107-1115. [62] 赵欣, 欧剑, 李跃. 薄壁叶片加工变形模型预测与误差补偿[J]. 制造业自动化, 2014, 36(13):36-40. ZHAO X, OU J, LI Y. The thin blade processing deformation prediction model and error compensation[J]. Manufacturing Automation, 2014, 36(13):36-40(in Chinese). [63] 黄泽华, 李建勇, 樊文刚, 等. 复杂曲面薄壁叶片点铣加工弹性变形预测[J]. 西安交通大学学报, 2012, 46(5):67-72. HUANG Z H, LI J Y, FAN W G, et al. Deformation prediction of thin-walled vane with complex surface in ball end milling[J]. Journal of Xi'an Jiaotong University, 2012, 46(5):67-72(in Chinese). [64] SCHULZ H, BIMSCHAS K. Optimization of precision machining by simulation of the cutting process[J]. CIRP Annals, 1993, 42(1):55-58. [65] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1629-1641. [66] TANG A J, LIU Z Q. Experiments and simulation of elastic-plastic deformation in thin wall part milling[J]. Advanced Materials Research, 2011, 314-316:482-486. [67] 屈力刚, 张林栋, 刘洪侠. 基于UKF薄壁件加工变形预测技术研究[J]. 锻压装备与制造技术, 2020, 55(1):91-95. QU L G, ZHANG L D, LIU H X. Research on prediction technology of processing deformation for thin-walled parts based on UKF[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(1):91-95(in Chinese). [68] LIU G. Study on deformation of titanium thin-walled part in milling process[J]. Journal of Materials Processing Technology, 2009, 209(6):2788-2793. [69] CHENG Y N, ZUO D G, WU M Y, et al. Study on simulation of machining deformation and experiments for thin-walled parts of titanium alloy[J]. International Journal of Control and Automation, 2015, 8(1):401-410. [70] HUANG W W, ZHANG Y, ZHANG X Q, et al. Wall thickness error prediction and compensation in end milling of thin-plate parts[J]. Precision Engineering, 2020, 66:550-563. [71] 王庆霞, 胡晓伟, 庞静珠, 等. 基于切削力实时测量的弱刚性件加工变形控制[J]. 仪器仪表学报, 2019, 40(2):223-232. WANG Q X, HU X W, PANG J Z, et al. Deformation control in weak rigidity workpiece milling based on real-time cutting force measuring[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):223-232(in Chinese). [72] 白万金. 航空薄壁件精密铣削加工变形的预测理论及方法研究[D]. 杭州:浙江大学, 2009:5-114. BAI W J. Study on deformation prediction theory and methods of the aerospace thin-walled components during precision milling process[D]. Hangzhou:Zhejiang University, 2009:5-114(in Chinese). [73] 罗宇. 大型薄壁件加工变形预测及其影响因素研究[D]. 哈尔滨:哈尔滨工业大学, 2017:57-63. LUO Y. Machining deformation prediction and research of influence factors for large thin-walled workpiece[D]. Harbin:Harbin Institute of Technology, 2017:57-63(in Chinese). [74] HUANG X M, SUN J, LI J F. Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5):1035-1041. [75] 杨吟飞, 张峥, 李亮, 等. 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014, 35(2):574-581. YANG Y F, ZHANG Z, LI L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):574-581(in Chinese). [76] YOSHIHARA N, HINO Y. Removal technique of residual stress in 7075 aluminum alloy, residual stress III:Science and technology[M]. Amsterdam:Elsevier Science Publishers, 1992:1140-1145. [77] WANG Z J, CHEN W Y, ZHANG Y D, et al. Study on the machining distortion of thin-walled part caused by redistribution of residual stress[J]. Chinese Journal of Aeronautics, 2005, 18(2):175-179. [78] 孙杰, 柯映林. 残余应力对航空整体结构件加工变形的影响分析[J]. 机械工程学报, 2005, 41(2):117-122. SUN J, KE Y L. Study on machining distortion of unitization airframe due to residual stress[J]. Journal of Mechanical Engineering, 2005, 41(2):117-122(in Chinese). [79] SALEEM W, IJAZ H, ZAIN-UL-ABDEIN M, et al. Studying control strategies for dimensional precision in aerospace parts machining[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(1):39-47. [80] ROBINSON J S, TANNER D A, TRUMAN C E, et al. Measurement and prediction of machining induced redistribution of residual stress in the aluminium alloy 7449[J]. Experimental Mechanics, 2011, 51(6):981-993. [81] JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP, 2013, 12:37-42. [82] 王立涛, 柯映林, 黄志刚, 等. 航空结构件铣削残余应力分布规律的研究[J]. 航空学报, 2003, 24(3):286-288. WANG L T, KE Y L, HUANG Z G, et al. Study on residual stress produced in milling of aeronautic structure[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):286-288(in Chinese). [83] BI Y B, DONG H Y, CHENG Q L, et al. Distortion prediction of aerospace monolithic components due to milling process[J]. Key Engineering Materials, 2008, 392-394:841-847. [84] 张以都, 张洪伟. 航空整体结构件加工变形有限元数值仿真[J]. 北京航空航天大学学报, 2009, 35(2):188-192. ZHANG Y D, ZHANG H W. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):188-192(in Chinese). [85] 廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5):166-172. LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5):166-172(in Chinese). [86] 姬伟. 薄壁件铣削加工误差预测与快速铣削仿真平台的开发[D]. 南昌:南昌航空大学, 2012:3-44. JI W. Study on error prediction for thin-walled workpiece milling process and developing technology of fast milling simulating platform[D]. Nanchang:Nanchang Hangkong University, 2012:3-44(in Chinese). [87] SIEBENALER S P, MELKOTE S N. Prediction of workpiece deformation in a fixture system using the finite element method[J]. International Journal of Machine Tools and Manufacture, 2006, 46(1):51-58. [88] DENG H Y, MELKOTE S N. Determination of minimum clamping forces for dynamically stable fixturing[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):847-857. [89] WAN X J, ZHANG Y, HUANG X D. Investigation of influence of fixture layout on dynamic response of thin-wall multi-framed work-piece in machining[J]. International Journal of Machine Tools and Manufacture, 2013, 75:87-99. [90] FEI J X, LIN B, XIAO J L, et al. Investigation of moving fixture on deformation suppression during milling process of thin-walled structures[J]. Journal of Manufacturing Processes, 2018, 32:403-411. [91] 董辉跃, 柯映林. 铣削加工中薄壁件装夹方案优选的有限元模拟[J]. 浙江大学学报(工学版), 2004, 38(1):17-21. DONG H Y, KE Y L. Finite element simulation for optimal clamping scheme of thin-walled workpiece in milling process[J]. Journal of Zhejiang University (Engineering Science), 2004, 38(1):17-21(in Chinese). [92] 倪丽君. 计算机辅助夹具设计中的装夹优化技术研究[D]. 南京:南京航空航天大学, 2007:4-66. NI L J. Research on design optimization technology in computer aided fixture design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:4-66(in Chinese). [93] 路冬. 航空整体结构件加工变形预测及装夹布局优化[D]. 济南:山东大学, 2007:13-117. LU D. Deformation prediction and fixture layout optimization of aerospace monolithic components[D]. Jinan:Shandong University, 2007:13-117(in Chinese). [94] 张婷. 航空薄壁件装夹布局优化研究[D]. 南昌:南昌航空大学, 2017:3-68. ZHANG T. Study of the optimal clamping scheme of aerospace thin-walled parts[D]. Nanchang:Nanchang Hangkong University, 2017:3-68(in Chinese). [95] 于金, 高彦梁. 多点柔性工装装夹布局优化研究[J]. 制造技术与机床, 2016(2):124-129. YU J, GAO Y L. Research on clamping distribution optimization of multi-point flexible tooling system[J]. Manufacturing Technology & Machine Tool, 2016(2):124-129(in Chinese). [96] 贺旭东, 明伟伟, 郭国强, 等. 走刀路径对多型腔薄壁件加工变形的影响[J]. 机械设计与制造, 2019(3):106-109. HE X D, MING W W, GUO G Q, et al. Influence of tool path on thin-wall parts' deformation[J]. Machinery Design & Manufacture, 2019(3):106-109(in Chinese). [97] 王立涛. 关于航空框类结构件铣削加工残余应力和变形机理的研究[D]. 杭州:浙江大学, 2003:17-64. WANG L T. Study on residual stresses and distortion theory of aeronautica frame structure in the milling[D]. Hangzhou:Zhejiang University, 2003:17-64(in Chinese). [98] 孙国智, 王怀明, 郝敬显, 等. 复杂薄壁结构件加工变形控制工艺分析[J]. 工具技术, 2015, 49(4):46-49. SUN G Z, WANG H M, HAO J X, et al. Analysis on deformation control machining process of complex thin-wall structure[J]. Tool Engineering, 2015, 49(4):46-49(in Chinese). [99] 郭魂, 左敦稳, 刘远伟, 等. 航空腔型薄壁件铣削变形的预测[J]. 吉林大学学报(工学版), 2008, 38(1):84-88. GUO H, ZUO D W, LIU Y W, et al. Prediction of milling distortion for aero-thin-walled components[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(1):84-88(in Chinese). [100] 王光宇, 吴运新, 闫鹏飞, 等. 航空铝合金薄壁件铣削加工变形的预测模型[J]. 中南大学学报(自然科学版), 2012, 43(5):1696-1702. WANG G Y, WU Y X, YAN P F, et al. Prediction model for machining deformation of aeronautical aluminum alloy thin-walled workpiece[J]. Journal of Central South University (Science and Technology), 2012, 43(5):1696-1702(in Chinese). [101] HUANG N D, BI Q Z, WANG Y H, et al. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84:1-8. [102] LI Z L, ZHU L M. Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization[J]. Precision Engineering, 2019, 55:77-87. [103] 吴红兵, 柯映林, 刘刚, 等. 航空框类整体结构件铣削加工变形研究[J]. 浙江大学学报(工学版), 2009, 43(3):546-550. WU H B, KE Y L, LIU G, et al. Study on milling deformation of aerospace frame monolithic components[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(3):546-550(in Chinese). [104] 柯烈强. 航空框类结构件铣削加工残余应力抑制策略研究[D]. 芜湖:安徽工程大学, 2010:5-74. KE L Q. Research on control residual stresses mannel of aeronautic frame structure in the milling[D]. Wuhu:Anhui Polytechnic University, 2010:5-74(in Chinese). [105] WANG J, IBARAKI S, MATSUBARA A, et al. FEM-based simulation for workpiece deformation in thin-wall milling[J]. International Journal of Automation Technology, 2015, 9(2):122-128. [106] SRIDHAR G, BABU P R. Cutting parameter optimization for minimizing machining distortion of thin wall thin floor avionic components using Taguchi technique[J]. International Journal of Mechanical Engineering and Technology, 2013, 4(4):71-78. [107] LI B Z, JIANG X H, YANG J G, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216:223-233. [108] XUE L F, CHEN W F, FENG T, et al. Synchronous optimization of clamping force and cutting parameters for thin-walled parts[J]. Advanced Materials Research, 2014, 900:623-626. [109] 胡权威, 乔立红, 张洪伟. 薄壁结构件铣削参数有限元正交优势分析及优化[J]. 机械工程学报, 2013, 49(21):176-184. HU Q W, QIAO L H, ZHANG H W. Optimization of thin-walled part milling parameters based on finite element and orthogonal dominance analysis[J]. Journal of Mechanical Engineering, 2013, 49(21):176-184(in Chinese). [110] 薛迪. 大型回转体薄壁件加工变形仿真及切削参数优化研究[D]. 长春:吉林大学, 2018:4-66. XUE D. Simulation of machining deformation and optimization of cutting parameters research for large-scale rotary thin-walled parts[D]. Changchun:Jilin University, 2018:4-66(in Chinese). [111] 丛靖梅, 莫蓉, 吴宝海, 等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2):205-210. CONG J M, MO R, WU B H, et al. Prediction of deformation induced by residual stress in milling of thin-walled part and optimization of cutting parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2):205-210(in Chinese). [112] OBARA H, WATANABE T, OHSUMI T, et al. A method to machine three-dimensional thin parts[M]//Initiatives of precision engineering at the beginning of a millennium. Boston:Kluwer Academic Publishers;2001:87-91. [113] 贾广杰. 薄壁壳体石蜡填充高速加工法[J]. 新技术新工艺, 2009(3):4-6. JIA G J. High speed processing method of paraffin filling for thin-walled workpiece[J]. New Technology & New Process, 2009(3):4-6(in Chinese). [114] 于金, 高彦梁, 朱秀峰. 辅助支撑对航空接头薄壁件加工变形的控制[J]. 组合机床与自动化加工技术, 2015(10):138-140. YU J, GAO Y L, ZHU X F. Auxiliary support for the control of machining deformation of an aviation joint thin-walled parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(10):138-140(in Chinese). [115] 章绍昆, 毕庆贞, 王宇晗. 镜像铣削加工奇异区域刀具路径优化[J]. 航空学报, 2021, 42(10):424951. ZHANG S K, BI Q Z, WANG Y H. Toolpath optimization for mirror milling in singular area[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):424951(in Chinese). [116] 鲍岩. 面向飞机蒙皮制造的薄板镜像铣削工艺基础[D]. 大连:大连理工大学, 2018:24-27. BAO Y. Foundation of mirror milling technology of sheet for aircraft skin manufacturing[D]. Dalian:Dalian University of Technology, 2018:24-27(in Chinese). [117] 肖聚亮, 姚永胜, 黄田, 等. 用于镜像加工的刚柔性多点随动支撑头:ZL104668989[P]. 2016-09-07. XIAO J L, YAO Y S, HUANG T, et al. Rigid flexible multi-point follow up support head for mirroring:ZL104668989[P]. 2016-09-07(in Chinese). [118] 肖聚亮, 姚永胜, 黄田, 等. 用于薄壁件栅格加工的带刚柔支撑的吸附支撑头:ZL104690577B[P]. 2017-01-18. XIAO J L, YAO Y S, HUANG T, et al. Adsorption support head with rigid and flexible support for grating processing of thin wall parts:ZL104668989[P]. 2017-01-18(in Chinese). [119] 王皓, 赵勇, 陈根良, 等. 用于大型薄壁构件铣削的并联转动-平动解耦加工装备:ZL104001974B[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. Parallel transfer-translational decoupling machining equipment for milling large thin-walled parts:ZL104001974B[P]. 2016-04-27(in Chinese). [120] 郝金明, 赵勇, 王皓, 等. 薄壁构件镜像加工支撑机构综合刚度的分析与优化[J]. 机械设计与研究, 2015, 31(2):155-159, 163. HAO J M, ZHAO Y, WANG H, et al. Synthetical stiffness analysis and optimization of mirror support mechanism for thin-walled structures[J]. Machine Design & Research, 2015, 31(2):155-159, 163(in Chinese). [121] 李迎光, 郝小忠, 周鑫, 等. 飞机蒙皮镜像铣削方法及装备:ZL104400086B[P]. 2016-07-06. LI Y G, HAO X Z, ZHOU X, et al. Method and equipment for mirror milling of aircraft skin:ZL104400086B[P]. 2016-07-06(in Chinese). [122] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese). [123] SEGUY S, DESSEIN G, ARNAUD L. Surface roughness variation of thin wall milling, related to modal interactions[J]. International Journal of Machine Tools and Manufacture, 2008, 48(3-4):261-274. [124] LIU C Q, LI Y G, SHEN W M. A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling[J]. Machining Science and Technology, 2018, 22(5):766-786. [125] 张攀, 陈蔚芳. 薄壁件加工变形预测及主动补偿方法[J]. 现代制造工程, 2008(3):70-72, 46. ZHANG P, CHEN W F. Deformation prediction in machining of thin-walled parts and an active method of compensation[J]. Modern Manufacturing Engineering, 2008(3):70-72, 46(in Chinese). [126] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1):1-18. TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1):1-18(in Chinese). [127] CHRISTIAND, KISWANTO G. Digital twin approach for tool wear monitoring of micro-milling[J]. Procedia CIRP, 2020, 93:1532-1537. [128] LUO W C, HU T L, YE Y X, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101974. [129] QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP, 2019, 81(C):1388-1393. |
[1] | Lianjie MA, Wenhao DU, Zhen ZHAO, Zhe QIU. Instantaneous milling force model of side milling hard and brittle materials in the state of tool eccentricity and runout [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 428925-428925. |
[2] | Zonghao LIU, Haitong WANG, Yuwei YANG, Yonglin CAI. Deformation analysis of five⁃axis milling considering material removal effect [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 427977-427977. |
[3] | Laixiao LU, Changguan XU, Jianhua LIU, Meizhen QIN, Yingbo LYU, Yuqin YAN. Influence of initial stress state on bilateral rolling process of thin⁃walled part [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427415-427415. |
[4] | CHANG Zhengping, WANG Zhongqi, WANG Binbin, KANG Yonggang, LUO Qun. Riveting force computation model based on formed head inhomogeneous deformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2312-2320. |
[5] | Li Xuelei;Zhu Zengwei;Zhang Yong;Zhu Dong;Zhu Di. Experimental Research on Electroforming of Complex Parts with Thin Wall [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 2068-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341