Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (6): 629618-629618.doi: 10.7527/S1000-6893.2024.29618
• Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft • Previous Articles Next Articles
Chuihuan KONG, Dawei WU(), Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI
Received:
2023-09-20
Revised:
2023-11-23
Accepted:
2024-02-01
Online:
2024-03-25
Published:
2024-02-07
Contact:
Dawei WU
E-mail:marsbuaa@163.com
CLC Number:
Chuihuan KONG, Dawei WU, Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI. Design of fully electric scheme for three⁃surface verification aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629618-629618.
1 | 纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11. |
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese). | |
2 | BRAVO-MOSQUERA P D, CATALANO F M, ZINGG D W. Unconventional aircraft for civil aviation: A review of concepts and design methodologies[J]. Progress in Aerospace Sciences, 2022, 131: 100813. |
3 | 夏明, 巩文秀, 郑建强, 等. 欧美翼身融合大型民机方案综述[J]. 民用飞机设计与研究, 2021(3): 123-134. |
XIA M, GONG W X, ZHENG J Q, et al. A review of blended-wing-body for large civil aircraft of Europe and America[J]. Civil Aircraft Design & Research, 2021(3): 123-134 (in Chinese). | |
4 | 邢宇. 桁架支撑机翼布局客机总体设计的综合分析与优化[D]. 南京: 南京航空航天大学, 2018: 3-13. |
XING Y. Integrated analysis and optimization in conceptual design of airliners with truss-braced wing configuration[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 3-13. (in Chinese). | |
5 | QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6): 321-343. |
6 | DEHPANAH P, NEJAT A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43: 96-110. |
7 | 柴啸, 陈迎春, 谭兆光, 等. 翼身融合布局客机总体参数分析与优化[J]. 航空学报, 2019, 40(9): 623042. |
CHAI X, CHEN Y C, TAN Z G, et al. Analysis and optimization of overall parameters for blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623042 (in Chinese). | |
8 | 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289. |
JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289 (in Chinese). | |
9 | 潘立军, 吴大卫, 谭兆光, 等. 基于适航符合性的翼身融合布局客机客舱布置设计[J]. 航空学报, 2019, 40(9): 623044. |
PAN L J, WU D W, TAN Z G, et al. Cabin layout design for BWB civil aircraft based on airworthiness compliance[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623044 (in Chinese). | |
10 | IATA. Aircraft technology net zero roadmap[EB/OL]. (2023-06-02)[2023-9-20]. . |
11 | REIST T A, ZINGG D W. Aerodynamic design of blended wing-body and lifting-fuselage aircraft[R]: AIAA-2016-3874. Reston: AIAA, 2016. |
12 | BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research phase I: Final report: NASA/CR-2011- 216847[R]. Washington, D.C.: NASA, 2011. |
13 | 张新榃, 张帅, 王建礼, 等. 支撑翼布局客机总体参数对结构重量的影响[J]. 航空学报, 2019, 40(2): 522359. |
ZHANG X T, ZHANG S, WANG J L, et al. Effect of primary parameters on structure weight of civil aircraft with strut-braced wing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522359 (in Chinese). | |
14 | BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research phase II: N+4 advanced concept development: NASA/CR-2012-217556[R]. Washington, D.C.: NASA, 2012. |
15 | CAVALLARO R, Challenges DEMASI L., ideas, and innovations of joined-wing configurations : A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87: 1-93. |
16 | DRONEY C K, HARRISON N, GATLIN G. Subsonic ultra-green aircraft research: Transonic truss-braced wing technical maturation[C]∥ Proceedings of the 31st Congress of the Internation-al Council of the Aeronautical Sciences. Bonn: ICAS, 2018: 9-14. |
17 | HARRISON N A, GATLIN G M, VIKEN S A, et al. Development of an efficient M=0.80 transonic truss-braced wing aircraft: AIAA-2020-0011[R]. Reston: AIAA, 2020. |
18 | XIONG J T, NGUYEN N T, BARTELS R E. Jig twist optimization of Mach 0.8 transonic truss-braced wing aircraft: AIAA-2023-1573[R]. Reston: AIAA, 2023. |
19 | STROHMEYER D, SEUBERT R, HEINZE W, et al. Three surface aircraft - A concept for future transport aircraft: AIAA-2000-0566[R]. Reston: AIAA, 2000. |
20 | NICOLOSI F, CORCIONE S, TRIFARI V, et al. Design and optimization of a large turboprop aircraft[J]. Aerospace, 2021, 8(5): 132. |
21 | CACCIOLA S, RIBOLDI C, ARNOLDI M. Three-surface model with redundant longitudinal control: Modeling, trim optimization and control in a preliminary design perspective[J]. Aerospace, 2021, 8(5): 139. |
22 | RIBOLDI C E D, CACCIOLA S, CEFFA L. Studying and optimizing the take-off performance of three-surface aircraft[J]. Aerospace, 2022, 9(3): 139. |
23 | SOLLO A. P.180 avanti: an iconic airplane and the achievement of an historical milestone[J]. Aerotecnica Missili & Spazio, 2021, 100(1): 69-78. |
24 | PIAGGIO AEROSPACE. Piaggio Aerospace Brochure Avanti Evo optimised[EB/OL]. (2018-02-28)[2023-09-20]. . |
25 | ALI J, SALEH M. Experimental and numerical study on the aerodynamics and stability characteristics of a canard aircraft[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 53(2): 165-174. |
26 | AGNEW J W, HESS J R Jr. Benefits of aerodynamic interaction to the three-surface configuration[J]. Journal of Aircraft, 1980, 17(11): 823-827. |
27 | FELDER J L. NASA electric propulsion system studies: GRC-E-DAA-TN28410[R]. Washington, D.C.: NASA, 2015. |
28 | 王妙香. NASA亚声速大型飞机电推进技术研究综述[J]. 航空科学技术, 2019, 30(11): 22-29. |
WANG M X. Overview of NASA electrified aircraft propulsion research for large subsonic transports[J]. Aeronautical Science & Technology, 2019, 30(11): 22-29 (in Chinese). | |
29 | JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports: AIAA-2017-4701[R]. Reston: AIAA, 2017. |
30 | WELSTEAD J, FELDER J L. Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion: AIAA-2016-1027[R]. Reston: AIAA, 2016. |
31 | STARKEY R, ARGROW B, KREVOR Z. Design and flight testing of a 15% dynamically scaled HL-20 vehicle model: AIAA-2012-1048[R]. Reston: AIAA, 2012. |
32 | 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5): 671-679, 670. |
HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 671-679, 670 (in Chinese). | |
33 | CHAMBERS J R. Modeling flight: The role of dynamically scaled free-flight models in support of NASA’s aerospace programs[M]. Washington, D.C.: NASA, 2010: 1-16. |
34 | JENKINSON L R, RHODES D, SIMPKIN P. Civil jet aircraft design[M]. Reston: AIAA, 1999. |
35 | 陈迎春, 宋文滨, 刘洪. 民用飞机总体设计[M]. 上海: 上海交通大学出版社, 2010: 29-195. |
CHEN Y C, SONG W B, LIU H. Civil aircraft design[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 29-195 (in Chinese). | |
36 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
37 | LEVY D. Prediction of average downwash gradient for canard configurations: AIAA-1992-284[R]. Reston: AIAA, 1992. |
[1] | Jinghui DENG. Technical status and development of electric vertical take⁃off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937. |
[2] | Zhixing JI, Zhanxue WANG, Liwen CHENG, Jiang QIN, He LIU. Performance and matching analysis of gas turbine hybrid engine integrated with fuel cells in aviation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129326-129326. |
[3] | ZHANG Xingyu, GAO Zhenghong, LEI Tao, MIN Zhihao, LI Weiling, ZHANG Xiaobin. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125389-125389. |
[4] | SU Ning, HUANG Wenxin. Parallel power generation system based on dual-stator winding induction generator for electric propulsion aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 325409-325409. |
[5] | ZHANG Bendong, JIANG Jun, LI Zhi, LI Shimin, ZHANG Chaohai. Partial discharge characteristics of future more electric aircraft under low air pressure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325374-325374. |
[6] | ZONG Jian'an, ZHU Bingjie, HOU Zhongxi, YANG Xixiang. Design of hybrid-electric fixed-wing VTOL aircraft propulsion system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225395-225395. |
[7] | RAO Chong, ZHANG Tiejun, WEI Chuang, LIU Ying. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726387-726387. |
[8] | ZHANG Yang, ZHOU Zhou, GUO Jiahao. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224977-224977. |
[9] | LIU Haigang, LIU Liang, WANG Peng, ZHOU Wei. Model based simulation and analysis of energy optimization characteristics of more-electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525801-525801. |
[10] | ZHANG Zhuoran, XU Yanwu, YU Li, LI Jincai, XIA Yiwen. Parallel HVDC electric power system for more-electric-aircraft: State of the art and key technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 624069-624069. |
[11] | LEI Tao, KONG Delin, WANG Runlong, LI Weilin, ZHANG Xiaobin. Evaluation and optimization method for power systems of distributed electric propulsion aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 624047-624047. |
[12] | FAN Zhenwei, YANG Fengtian, LI Yadong, XIANG Song, ZHAO Weiping. Design and test of two-seater electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 623972-623972. |
[13] | LIU Yuanqiang, WANG Yanbing, XIANG Song, WANG Mengqi. Noise characteristics of propellers with different blade tips for electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 624567-624567. |
[14] | YANG Fengtian, FAN Zhenwei, XIANG Song, LIU Yuanqiang, ZHAO Weiping. Technical innovation and practice of electric aircraft in China [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 624619-624619. |
[15] | WANG Shuli, SUN Jinbo, KANG Guiwen, MA Shaohua. Energy efficiency optimization method for electric aircraft propulsion system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 623942-623942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341