Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (11): 529440.doi: 10.7527/S1000-6893.2023.29440
• Reviews • Previous Articles Next Articles
Ziyun WANG, Hang YU, Yue ZHANG, Huijun TAN(
), Yi JIN, Xin LI
Received:2023-08-14
Revised:2023-09-05
Accepted:2023-10-10
Online:2024-06-15
Published:2023-11-07
Contact:
Huijun TAN
E-mail:tanhuijun@nuaa.edu.cn
Supported by:CLC Number:
Ziyun WANG, Hang YU, Yue ZHANG, Huijun TAN, Yi JIN, Xin LI. Research progress on key issues of adjustable inlet system for aerospace vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529440.
Table 1
Adjustment requirements of rectangular adjustable inlet (operating Mach number 2-5)
| 待调节参数 | Ma=2.0 | Ma=2.5 | Ma=3.0 | Ma=3.5 | Ma=4.0 | Ma=4.5 | Ma=5.0 |
|---|---|---|---|---|---|---|---|
| 总气流偏转角/(°) | 14.2 | 26.8 | 36.8 | 44.0 | 50.0 | 54.4 | 58.0 |
| 一级斜激波波角/(°) | 36.3 | 35.2 | 26.7 | 25.3 | 24.6 | 24.1 | 23.8 |
| 二级斜激波波角/(°) | 30.6 | 29.5 | 29.0 | 28.6 | 28.4 | ||
| 喉道高度 | 0.703 | 0.472 | 0.299 | 0.204 | 0.146 | 0.110 | 0.087 |
| 唇罩前移量 | 0.446 | 0.153 | 0.082 | 0.05 | 0.017 | 0 |
| 1 | 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. |
| WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). | |
| 2 | 魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术, 2022(1): 1-12. |
| WEI Y Y. Major technological issues of aerospace vehicle with combined-cycle propulsion[J]. Aerospace Technology, 2022(1): 1-12 (in Chinese). | |
| 3 | 董芃呈, 韩玉琪, 刘金超. 宽适应性高超声速空天动力技术发展分析[J]. 航空动力, 2020(6): 25-30. |
| DONG P C, HAN Y Q, LIU J C. Development analysis of hypersonic aerospace power technology with wide adaptability[J]. Aerospace Power, 2020(6): 25-30 (in Chinese). | |
| 4 | 张灿, 胡冬冬, 叶蕾, 等. 2017年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2018(1): 47-50, 78. |
| ZHANG C, HU D D, YE L, et al. Review of the development of hypersonic vehicle technology abroad in 2017[J]. Tactical Missile Technology, 2018(1): 47-50, 78 (in Chinese). | |
| 5 | 康开华, 付丽. 美国军用空天飞机作战应用研究[J]. 飞航导弹, 2021(12): 104-110. |
| KANG K H, FU L. Research on operational application of American military space plane[J]. Aerodynamic Missile Journal, 2021(12): 104-110 (in Chinese). | |
| 6 | 梅东牧, 林鹏, 王战. 吸气式空天飞机对TBCC动力的需求分析[J]. 燃气涡轮试验与研究, 2013, 26(6): 12-14, 30. |
| MEI D M, LIN P, WANG Z. Requirements for TBCC propulsion of air-breathing aerospace vehicle[J]. Gas Turbine Experiment and Research, 2013, 26(6): 12-14, 30 (in Chinese). | |
| 7 | 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7. |
| YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7 (in Chinese). | |
| 8 | 金捷, 陈敏, 刘玉英, 等. 涡轮基组合循环发动机[M]. 北京: 国防工业出版社, 2019. |
| JIN J, CHEN M, LIU Y Y, et al. Turbine based combined cycle engine[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). | |
| 9 | SNYDER L, ESCHER D, DEFRANCESCO R, et al. Turbine based combination cycle (TBCC) propulsion subsystem integration: AIAA-2004-3649 [R].Reston: AIAA, 2004. |
| 10 | 何国强, 秦飞. 火箭基组合循环发动机[M]. 北京: 国防工业出版社, 2019. |
| HE G Q, QIN F. Rocket based combined cycle engine[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). | |
| 11 | VARVILL R, BOND A. The SKYLON spaceplane[J]. Journal of the British Interplanetary Society, 2004, 57: 22-32. |
| 12 | 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进, 2008, 34(6): 31-35. |
| NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion, 2008, 34(6): 31-35 (in Chinese). | |
| 13 | 胡勇. 空气涡轮火箭组合发动机总体方案研究与优化设计[D]. 长沙: 国防科学技术大学, 2013. |
| HU Y. Design and optimization research on air turbo rocket[D].Changsha: National University of Defense Technology, 2013 (in Chinese). | |
| 14 | 南向谊, 刘轶, 马元, 等. 空气涡轮火箭发动机热力过程及工作特性[J]. 空气动力学学报, 2022, 40(1): 181-189. |
| NAN X Y, LIU Y, MA Y, et al. Thermodynamic process and operating characteristics of air turbo rocket engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 181-189 (in Chinese). | |
| 15 | 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305. |
| WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305 (in Chinese). | |
| 16 | 刘大响. 航空燃气涡轮发动机稳定性设计与评定技术[M]. 北京: 航空工业出版社, 2004: 4. |
| LIU D X. Stability design and evaluation technology of aviation gas turbine engine[M]. Beijing: Aviation Industry Press, 2004: 4 (in Chinese). | |
| 17 | THOMAS S R. TBCC discipline overview. hypersonics project[C]∥2011 Technical Conference. 2011. |
| 18 | 谢旅荣, 郭荣伟. 定几何混压式轴对称超声速进气道气动特性数值仿真和实验验证[J]. 航空学报, 2007, 28(1): 78-83. |
| XIE L R, GUO R W. Numerical simulation and experimental validation of flow in mixed-compression axisymmetric supersonic inlet with fixed-geometry[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 78-83 (in Chinese). | |
| 19 | TAO Y, LIU W D, FAN X Q, et al. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge[J]. Physics of Fluids, 2017, 29(7): 071701. |
| 20 | 黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2018. |
| HUANG H X. Behaviors of shock train in isolator with background shocks and its control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| 21 | 凌文辉, 侯金丽, 韦宝禧, 等. 空天组合动力技术挑战及解决途径的思考[J]. 推进技术, 2018, 39(10): 2171-2176. |
| LING W H, HOU J L, WEI B X, et al. Technical challenge and potential solution for aerospace combined cycle engine[J]. Journal of Propulsion Technology, 2018, 39(10): 2171-2176 (in Chinese). | |
| 22 | ERDEM E, YANG L C, KONTIS K. Flow control using thermal bumps in hypersonic flow: AIAA-2010-1098 [R]. Reston: AIAA, 2010. |
| 23 | FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M= 2 inlet[J]. Experiments in Fluids, 2015, 56(54): 1-10. |
| 24 | MACHERET S O, SHNEIDER M N, MILES R B. Scramjet inlet control by off-body energy addition: A virtual cowl[J]. AIAA Journal, 2004, 42(11): 2294-2302. |
| 25 | 李程鸿. 一类流体式高超声速可调进气道的气动原理及验证研究[D]. 南京: 南京航空航天大学, 2015. |
| LI C H. Aerodynamic mechanism and validation of A fluidically variable hypersonic inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
| 26 | MACHERET S O, SHNEIDER M N, MILES R B. Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization[J]. AIAA Journal, 2002, 40: 74-81. |
| 27 | ALLEN J L. Performance of an inlet having a variable-angle two-dimensional compression surface and a fixed-geometry subsonic diffuser for application to reduced engine rotative speeds-Mach number 0.66, 1.5, 1.7, and 2.0[R]. Washington, D.C.: NACA, 1958. |
| 28 | 刘兴洲. 飞航导弹动力装置(上)[M]. 北京: 中国宇航出版社, 1992. |
| LIU X Z. Aircraft missile power plant (I)[M]. Beijing: China Aerospace Press, 1992 (in Chinese). | |
| 29 | KOJIMA T, TAGUCHI H, AOKI T, et al. Development study of the air-intake of the ATREX engine[C]∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. 2003: 7042. |
| 30 | BEHEIM M A, GERTSMA L W. Performance of variable two-dimensional inlet designed for engine-inlet matching I - Performance at design Mach number of 3.07[R]. Washington, D.C.: NACA, 1956. |
| 31 | SAUNDERS D, SLATER J, DIPPOLD V F, et al. TBCC inlet experiments and analysis[C]∥FAP Annual Review, 2007. |
| 32 | 谭慧俊, 庄逸, 凌棫, 等. 一种刚性/柔性组合调节的连续可调进气道及控制方法: CN107191273B[P]. 2018-12-14. |
| TAN H J, ZHUANG Y, LING Y, et al. Continuous adjustable air inlet channel adopting rigidity and flexibility combined adjustment and control method: CN107191273B[P]. 2018-12-14 (in Chinese). | |
| 33 | 孙姝, 王晨曦, 谭慧俊, 等. 一种刚性/柔性结合的连续可调进气道的设计方法: CN107341323B[P]. 2019-05-28. |
| SUN S, WANG C X, TAN H J, et al. Rigidity/flexibility combined continuous variable inlet duct design method: CN107341323B[P]. 2019-05-28 (in Chinese). | |
| 34 | 邬凤林. 宽范围可调内转进气道设计方法研究[D]. 南京: 南京理工大学, 2017. |
| WU F L. Study on design method of wide range adjustable internal rotation inlet[D]. Nanjing: University of Science and Technology, 2017 (in Chinese). | |
| 35 | 闵浩, 孙波, 李嘉新, 等. 一种内并联型内转进气道通道间干扰特性研究[J]. 推进技术, 2018, 39(12): 2695-2702. |
| MIN H, SUN B, LI J X, et al. Investigation on interference characteristics among channels of a over-under inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(12): 2695-2702 (in Chinese). | |
| 36 | 郭峰, 桂丰, 尤延铖, 等. 一种涡轮基组合动力的整机低速风洞试验研究[J]. 推进技术, 2019, 40(11): 2436-2443. |
| GUO F, GUI F, YOU Y C, et al. Experimental study of TBCC engine performance in low speed wind tunnel[J]. Journal of Propulsion Technology, 2019, 40(11): 2436-2443 (in Chinese). | |
| 37 | 朱伟, 王霄, 华正旭, 等. 宽速域组合动力TBCC新型三维内转式进气道设计分析[J]. 飞机设计, 2019, 39(3): 13-17, 38. |
| ZHU W, WANG X, HUA Z X, et al. The design and analysis of wide speed range turbine based combine cycle three-dimensional inward turning inlet[J]. Aircraft Design, 2019, 39(3): 13-17, 38 (in Chinese). | |
| 38 | 何墨凡. 内转式TBCC进气道气动设计与分析[D]. 南京: 南京航空航天大学, 2020. |
| HE M F. Aerodynamic design and analysis of TBCC inward-turning inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
| 39 | ZHANG Y, TAN H J, LI J F, et al. Ramp shock regulation of supersonic inlet with shape memory alloy plate[J]. AIAA Journal, 2018, 56(4): 1696-1702. |
| 40 | 张悦, 谭慧俊, 李博, 等. 基于柔性中心体的轴对称可调超声速进气道的设计方法: CN107091159B[P]. 2018-07-31. |
| ZHANG Y, TAN H J, LI B, et al. Design method of axial symmetry adjustable ultrasonic air inlet way based on flexible center body: CN107091159B[P]. 2018-07-31 (in Chinese). | |
| 41 | FERRERO A. Control of a supersonic inlet in off-design conditions with plasma actuators and bleed[J]. Aerospace, 2020, 7(3): 32. |
| 42 | HAWS R G, NOALL J S, DAINES R L. Computational investigation of a method to compress air fluidically in supersonic inlets[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 51-59. |
| 43 | 程代姝, 张悦, 高婉宁, 等. 结合局部次流循环的变几何轴对称进气道研究[J]. 推进技术, 2019, 40(9): 2003-2011. |
| CHENG D S, ZHANG Y, GAO W N, et al. Investigation of a variable axisymmetric inlet with local secondary flow recirculation[J]. Journal of Propulsion Technology, 2019, 40(9): 2003-2011 (in Chinese). | |
| 44 | SHNEIDER M, MACHERET S, MILES R. Comparative analysis of MHD and plasma methods of scramjet inlet control: AIAA-2003-0170 [R]. Reston: AIAA, 2003. |
| 45 | KULKARNI N V, PHAN M Q. Performance optimization of the magnetohydrodynamic generator at the scramjet inlet[J]. Journal of Propulsion and Power, 2005, 21(5): 822-830. |
| 46 | YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74: 72-80. |
| 47 | HUANG H X, TAN H J, CAI J, et al. Restart processes of rectangular hypersonic inlets with different internal contraction ratios[J]. AIAA Journal, 2021, 59(7): 2427-2439. |
| 48 | VAN WIE D, KWOK F, WALSH R. Starting characteristics of supersonic inlets: AIAA-1996-2914 [R].Reston: AIAA, 1996. |
| 49 | 田珊珊, 金亮, 杜兆波, 等. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报, 2023, 44(18): 028411. |
| TIAN S S, JIN L, DU Z B, et al. Research progress of shock wave/boundary layer interaction controls induced by bump[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 028411 (in Chinese). | |
| 50 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
| WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
| 51 | 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2): 241-259. |
| ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology, 2020, 41(2): 241-259 (in Chinese). | |
| 52 | CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston:AIAA, 2001. |
| 53 | SUN S, ZHANG H Y, CHENG K M, et al. The full flowpath analysis of a hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2007, 20(5): 385-393. |
| 54 | RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493. |
| 55 | TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 49(2): 279-288. |
| 56 | FISHER S A, NEALE M C, BROOKS A J. On the sub-critical stability of variable ramp intakes at Mach numbers around 2: R.&M. No. 3711 [R]. London: Her Majesty’s Stationery Office, 1972. |
| 57 | TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10): 2354-2365. |
| 58 | TAN H J, SUN S, YIN Z L. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking[J]. Journal of Propulsion and Power, 2009, 25(1): 138-147. |
| 59 | LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power, 2011, 27(2): 306-318. |
| 60 | CHIMA R. Analysis of buzz in a supersonic inlet[R]. Washington, D.C.: NASA, 2012. |
| 61 | WANG C P, YANG X, XUE L S, et al. Correlation analysis of separation shock oscillation and wall pressure fluctuation in unstarted hypersonic inlet flow[J]. Aerospace, 2019, 6(1): 8. |
| 62 | SOLTANI M R, SEPAHI-YOUNSI J. Buzz cycle description in an axisymmetric mixed-compression air intake[J]. AIAA Journal, 2016, 54(3): 1040-1053. |
| 63 | WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6): 1528-1542. |
| 64 | LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power, 1998, 14(1): 90-100. |
| 65 | MOASE W H, BREAR M J, MANZIE C. The forced response of choked nozzles and supersonic diffusers[J]. Journal of Fluid Mechanics, 2007, 585: 281-304. |
| 66 | ROBINET J C, CASALIS G. Shock oscillations in diffuser modeled by a selective noise amplification[J]. AIAA Journal, 1999, 37: 453-459. |
| 67 | ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11: 67-94. |
| 68 | ROCKWELL D. Oscillations of impinging shear layers[J]. AIAA Journal, 1983, 21(5): 645-664. |
| 69 | MEIER G E A, SZUMOWSKI A P, SELEROWICZ W C. Self-excited oscillations in internal transonic flows[J]. Progress in Aerospace Sciences, 1990, 27(2): 145-200. |
| 70 | FESZTY D, BADCOCK K J, RICHARDS B E. Driving mechanisms of high-speed unsteady spiked body flows, part I: Pulsation mode[J]. AIAA Journal, 2004, 42(1): 95-106. |
| 71 | TRAPIER S, DECK S, DUVEAU P. Delayed detached-eddy simulation and analysis of supersonic inlet buzz[J]. AIAA Journal, 2008, 46(1): 118-131. |
| 72 | OH J Y, MA F H, HSIEH S Y, et al. Interactions between shock and acoustic waves in a supersonic inlet diffuser[J]. Journal of Propulsion and Power, 2005, 21(3): 486-495. |
| 73 | WONG H Y W. Overview of flow oscillations in transonic and supersonic nozzles[J]. Journal of Propulsion and Power, 2006, 22(4): 705-720. |
| 74 | CHANG J T, WANG L, BAO W, et al. Novel oscillatory patterns of hypersonic inlet buzz[J]. Journal of Propulsion and Power, 2012, 28(6): 1214-1221. |
| 75 | LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10): 2485-2492. |
| 76 | ZHANG Q F, TAN H J, CHEN H, et al. Unstart process of a rectangular hypersonic inlet at different Mach numbers[J]. AIAA Journal, 2016, 54(12): 3681-3691. |
| 77 | MOLDER S, TIMOFEEV E, TAHIR R. Flow starting in high compression hypersonic air inlets by mass spillage: AIAA-2004-4130[R].Reston: AIAA, 2004. |
| 78 | SUN B, ZHANG K Y. Empirical equation for self-starting limit of supersonic inlets[J]. Journal of Propulsion and Power, 2010, 26(4): 874-875. |
| 79 | XIE W Z, MA G F, GUO R W, et al. Flow-based prediction for self-starting limit of two-dimensional hypersonic inlets[J]. Journal of Propulsion and Power, 2016, 32(2): 463-471. |
| 80 | DEVARAJ M K K, JUTUR P, RAO S M V, et al. Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6[J]. Physics of Fluids, 2020, 32(2): 026103. |
| 81 | JIN Y, SUN S, TAN H J, et al. Flow response hysteresis of throat regulation process of a two-dimensional mixed-compression supersonic inlet[J]. Chinese Journal of Aeronautics, 2022, 35(3): 112-127. |
| 82 | LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79: 647-657. |
| 83 | REARDON J P, SCHETZ J A, LOWE K T. Computational analysis of unstart in variable-geometry inlet[J]. Journal of Propulsion and Power, 2021, 37(4): 564-576. |
| 84 | SANDERS B, WEIR L. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system[R]. Washington, D. C.: NASA, 2008. |
| 85 | LIU K L, ZHANG K Y. Numerical investigation of 2-D hypersonic inlet starting characteristic caused by dynamic angle-of-attack: AIAA-2010-7034 [R].Reston: AIAA, 2010. |
| 86 | WANG W X, GUO R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563-571. |
| 87 | 张晓飞, 徐惊雷, 俞凯凯. 大内收缩比进气道加速起动过程中喘振特性研究[J]. 推进技术, 2018, 39(7): 1494-1503. |
| ZHANG X F, XU J L, YU K K. Study of oscillation characteristics of inlet with high internal contraction ratio in acceleration process[J]. Journal of Propulsion Technology, 2018, 39(7): 1494-1503 (in Chinese). | |
| 88 | 金毅. 二元可调进气道不起动/再起动流动机理与边界建模研究[D]. 南京: 南京航空航天大学, 2023. |
| JIN Y. Research on flow mechanism and boundary modeling of unstart/restart process for a two-dimensional variable inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023 (in Chinese). | |
| 89 | 袁化成, 梁德旺. 高超声速进气道再起动特性分析[J]. 推进技术, 2006, 27(5): 390-393, 398. |
| YUAN H C, LIANG D W. Analysis of characteristics of restart performance for a hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(5): 390-393, 398 (in Chinese). | |
| 90 | YOU J, YU A Y, LE J L, et al. Experimental research on restarting characteristics of supersonic inlet based of injection regulation: AIAA-2017-2387 [R].Reston: AIAA, 2017. |
| 91 | 游进, 夏智勋, 王登攀, 等. 高超声速进气道再起动特性及其影响因素数值模拟[J]. 固体火箭技术, 2011, 34(2): 161-166. |
| YOU J, XIA Z X, WANG D P, et al. Numerical study on influencing factors of restarting characteristics for a hypersonic inlet[J]. Journal of Solid Rocket Technology, 2011, 34(2): 161-166 (in Chinese). | |
| 92 | 方传波, 张旭荣, 余勇, 等. 二元高超声速进气道再起动特性研究[J]. 战术导弹技术, 2017(5): 28-35. |
| FANG C B, ZHANG X R, YU Y, et al. Study of restarting characteristics of the two-dimensional hypersonic inlet[J]. Tactical Missile Technology, 2017(5): 28-35 (in Chinese). | |
| 93 | 贾轶楠. 高超声速进气道再起动特性影响规律研究[D]. 北京: 中国科学院大学, 2018. |
| JIA Y N. Study on the influence law of hypersonic inlet restart characteristics[D]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese). | |
| 94 | GOLDBERG T, HEFNER J N. Starting phenomena for hypersonic inlets with thick turbulent boundary layers at Mach 6 [R]. Washington, D. C.: NASA, 1971. |
| 95 | XIE W Z, JIN Y, GE Y, et al. Feasibility of employing the restarting process to evaluate the self-starting ability for hypersonic inlets[J]. Aerospace Science and Technology, 2020, 107: 106347. |
| 96 | SU W Y, HU Z W, TANG P P, et al. Transient analysis for hypersonic inlet accelerative restarting process[J]. Journal of Spacecraft and Rockets, 2017, 54(2): 376-385. |
| 97 | REUBUSH D, NGUYEN L, RAUSCH V. Review of X-43A return to flight activities and current status: AIAA-2003-7085 [R]. Reston: AIAA, 2003. |
| 98 | ZVEGINTSEV V, MELNIKOV A Y. Change of flow patterns in a supersonic inlet during its acceleration and deceleration[J]. AIP Conference Proceedings, 2020, 2288(1): 020004. |
| 99 | 常军涛, 于达仁, 鲍文. 攻角引起的高超声速进气道不起动/再起动特性分析[J]. 航空动力学报, 2008, 23(5): 816-821. |
| CHANG J T, YU D R, BAO W. Characteristic analysis of unstart/restart of hypersonic inlets caused by variations of attack angle of freestream[J]. Journal of Aerospace Power, 2008, 23(5): 816-821 (in Chinese). | |
| 100 | XU S C, WANG Y, WANG Z G, et al. Experimental investigations of hypersonic inlet unstart/restart process and hysteresis phenomenon caused by angle of attack[J]. Aerospace Science and Technology, 2022, 126: 107621. |
| 101 | MURAKAMI A, YANAGI R, SHINDO S, et al. Mach 3 wind tunnel test of mixed compression supersonic inlet:AIAA-1992-3625 [R]. Reston: AIAA, 1992. |
| 102 | REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5): 868-875. |
| 103 | ZHANG J S, YUAN H C, WANG Y F, et al. Experiment and numerical investigation of flow control on a supersonic inlet diffuser[J]. Aerospace Science and Technology, 2020, 106: 106182. |
| 104 | CHANG J T, WANG L, BAO W, et al. Experimental investigation of hysteresis phenomenon for scramjet engine[J]. AIAA Journal, 2014, 52(2): 447-451. |
| 105 | LI N, CHANG J T, JIANG C Z, et al. Unstart/restart hysteresis characteristics analysis of an over–under TBCC inlet caused by backpressure and splitter[J]. Aerospace Science and Technology, 2018, 72: 418-425. |
| 106 | JIAO X L, CHANG J T, WANG Z Q, et al. Hysteresis phenomenon of hypersonic inlet at high Mach number[J]. Acta Astronautica, 2016, 128: 657-668. |
| 107 | KANTROWITZ A, DONALDSON C. Preliminary investigation of supersonic diffusers: ACR No. L5D20[R]. Washington,D.C.: NACA, 1945. |
| 108 | TIMOFEEV E, TAHIR R, MOLDER S. On recent developments related to flow starting in hypersonic air intakes: AIAA-2008-2512 [R].Reston: AIAA, 2008. |
| 109 | LIU H K, YAN C, ZHAO Y T, et al. Active control method for restart performances of hypersonic inlets based on energy addition[J]. Aerospace Science and Technology, 2019, 85: 481-494. |
| 110 | IM S K, DO H, CAPPELLI M. Plasma control of a turbulent boundary layer in an unstarting supersonic flow:AIAA-2011-1143 [R].Reston: AIAA, 2011. |
| 111 | PHAM H S, MYOKAN M, TAMBA T, et al. Effects of repetitive laser energy deposition on supersonic duct flows[J]. AIAA Journal, 2018, 56(2): 542-553. |
| 112 | DELERY J M. Shock wave/turbulent boundary layer interaction and its control[J]. Progress in Aerospace Sciences, 1985, 22(4): 209-280. |
| 113 | CHYU W J, RIMLINGER M J, SHIH T I P. Control of shock-wave/boundary-layer interactions by bleed[J]. AIAA Journal, 1995, 33(7): 1239-1247. |
| 114 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011. |
| 115 | SANDERS B W, MITCHELL G A. Increasing the stable operating range of a Mach 2.5 inlet[R]. Washington, D. C.: NASA, 1970. |
| 116 | PAYNTER G, MAYER D, TJONNELAND E. Flow stability issues in supersonic inlet flow analyses: AIAA-1993-0290 [R]. Reston: AIAA, 1993. |
| 117 | CHEN H, TAN H J, LIU Y Z, et al. External-compression supersonic inlet free from violent buzz[J]. AIAA Journal, 2019, 57(6): 2513-2523. |
| 118 | JIN Y, ZHANG Y, LI X, et al. Suppression of flow response hysteresis in the throttling/unthrottling process for supersonic inlet[J]. Acta Astronautica, 2023, 202: 34-47. |
| 119 | JIN Y, ZHANG Y, TAN H J, et al. Unstart/restart boundary broadening method for a two-dimensional supersonic variable inlet based on a distributed bleed system[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022115. |
| 120 | ALBERTSON C, EMAMI S, TREXLER C. Mach 4 test results of a dual-flowpath, turbine based combined cycle inlet: AIAA-2006-8138 [R]. Reston:AIAA, 2006. |
| 121 | 王德鹏. TBCC变几何进气道的设计及仿真研究[D]. 南京: 南京航空航天大学, 2014. |
| WANG D P. The design and simulation of a variable geometry TBCC inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
| 122 | SAUNDERS J, STUEBER T, THOMAS S, et al. Testing of the NASA hypersonics project combined cycle engine large scale inlet mode transition experiment (CCE LlMX): NASA/TM-2012-217217 [R]. Washington,D.C.:NASA, 2012. |
| 123 | SLATER J, SAUNDERS J. Computational fluid dynamics (CFD) simulation of hypersonic turbine-based combined-cycle (TBCC) inlet mode transition: NASA/TM-2010-216362 [R]. Washington,D.C.:NASA, 2010. |
| 124 | XIANG X H, LIU Y, QIAN Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[J]. Procedia Engineering, 2015, 99: 129-136. |
| 125 | YU H, ZHANG Y, CHEN L, et al. Characteristics of combined-cycle inlet during mode transition in off-design state[J]. AIAA Journal, 2023, 61(6): 2601-2611. |
| 126 | 李龙, 李博, 梁德旺, 等. 涡轮基组合循环发动机并联式进气道的气动特性[J]. 推进技术, 2008, 29(6): 667-672. |
| LI L, LI B, LIANG D W, et al. Aerodynamic characteristics of over/under inlet for turbine based combined cycle engine[J]. Journal of Propulsion Technology, 2008, 29(6): 667-672 (in Chinese). | |
| 127 | 赵亮. 内并联式TBCC进气道气动设计与分析[D]. 南京: 南京航空航天大学, 2010. |
| ZHAO L. Aerodynamic design and analysis of internal parallel TBCC inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). | |
| 128 | 刘君, 袁化成, 郭荣伟. 内并联式TBCC进气道模态转换过程流动特性分析[J]. 宇航学报, 2016, 37(4): 461-469. |
| LIU J, YUAN H C, GUO R W. Analysis of over/under TBCC inlet mode transition flow characteristic[J]. Journal of Astronautics, 2016, 37(4): 461-469 (in Chinese). | |
| 129 | LIU J, YUAN H C, GUO R W. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC) inlet mode transition[J]. Propulsion and Power Research, 2015, 4(3): 141-149. |
| [1] | Jinglei XU, Shuai HUANG, Ruifeng PAN, Yuqi ZHANG. Research on fluidic thrust vectoring nozzle: Recent developments and future trends [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631216-631216. |
| [2] | Zonglin JIANG, Guilai HAN, Yunpeng WANG, Yunfeng LIU, Chaokai YUAN, Changtong LUO, Chun WANG, Zongmin HU, Meikuan LIU. Theoretical bases and key technologies of JF-22 hypervelocity wind tunnel [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531130-531130. |
| [3] | Zhenbing LUO, Hao WANG, Zhijie ZHAO. Theory of dual synthetic jets and its empowerment of advancements in aeronautical technology [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531821-531821. |
| [4] | Shilin HU, Bingzhou CHEN, Wei KANG. Lift improvement mechanism of membrane airfoil using dynamic mode decomposition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130618-130618. |
| [5] | Lixin YANG, Yanbin LI, Qingguo FEI. Research progress and prospect of electromagnetic functional structure of aerospace vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331808-331808. |
| [6] | Hongyu WANG, Gang WANG, Tao LI, Zhenhou CHAO, Feng GAO. Transverse jet mixing based on energy deposition control via pulsed discharge [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 131520-131520. |
| [7] | Xiangying GUO, Jie XU, Yongchang HUANG. Characteristic analysis of large-scale wavelength protuberances wings near critical angle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730557-730557. |
| [8] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
| [9] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
| [10] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
| [11] | Yu ZHU, Jianhui CHENG, Cheng CHEN, Hexia HUANG, Huijun TAN. Mechanism of Bump inlet stable working at supersonic speed [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 130408-130408. |
| [12] | Xingdong LUO, Zihao HOU, Keming WU, Zhen SHEN, Shenrong ZHANG. Separation safety analysis for Stargazer using electromagnetic propulsion system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630481-630481. |
| [13] | Yanxiang HOU, Lihao FENG. Wind tunnel virtual flight test of flying wing configuration with active flow control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630636-630636. |
| [14] | Yihong LIU, Xingyu MA, Jiateng PAN, Nan JIANG. Test on controlling coherent structure of separated shear flow by bionic coverts [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 630284-630284. |
| [15] | Wen SHI, Jialing LE, Ye TIAN. Vitiation effects on scramjet operational characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30027-030027. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

