Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (5): 531821.doi: 10.7527/S1000-6893.2025.31821
• Fluid Mechanics and Flight Mechanics • Previous Articles
Zhenbing LUO(), Hao WANG, Zhijie ZHAO
Received:
2025-01-17
Revised:
2025-02-08
Accepted:
2025-02-11
Online:
2025-02-13
Published:
1900-01-01
Contact:
Zhenbing LUO
E-mail:luozhenbing@163.com
Supported by:
CLC Number:
Zhenbing LUO, Hao WANG, Zhijie ZHAO. Theory of dual synthetic jets and its empowerment of advancements in aeronautical technology[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531821.
Table 3
Characteristics and application of DSJ and efficiency enhancement in aeronautical technology
赋能航空领域 | 新技术 | 原理 | 应用场景 |
---|---|---|---|
气动 | 加力环量增升[ | 环量控制+虚拟格尼襟翼 | 短距起降、飞行控制 |
舵效增强[ | 抑制流动分离 | 短距起降 | |
前缘涡控制[ | 抑制流动分离 | 扩宽飞行包络、大机动 | |
反向射流虚拟阻力舵[ | 促进流动分离 | 隐身偏航控制 | |
气动增稳控制[ | 抑制流动分离 | 气动布局优化 | |
阵风载荷减缓控制[ | 促进流动分离 | 阵风载荷干扰 | |
动力 | 二次流矢量控制[ | 剪切层控制 | 机动控制隐身无舵面飞行控制 |
三次流推力矢量控制[ | 剪切层控制+Coanda效应 | ||
飞行控制 | 无舵面滚转控制[ | 双侧加力环量控制差动 | 隐身无舵面飞行控制机动控制 |
无舵面偏航控制 | 单侧反向射流虚拟阻力舵 | ||
无舵面俯仰控制 | 双侧加力环量控制联动 | ||
飞行安全 | 防冰[ | 气动力控制液滴运动 | 全天候飞行 |
除霜除冰[ | 热力耦合 | 全天候飞行 | |
防冰/气动力一体化[ | 热气膜防冰+抑制流动分离 | 全天候、机动飞行 | |
热控 | 矢量风冷[ | 矢量射流冲击 | 机载电子系统散热 |
喷雾冷却[ | 射流冲击+相变 | ||
液冷[ | 射流冲击+掺混 | ||
跨介质飞行 | 水下合成双射流[ | 水下流场控制 | 跨介质飞行器、水下航行器 |
1 | GREENBLATT D, WILLIAMS D R. Flow control for unmanned air vehicles[J]. Annual Review of Fluid Mechanics, 2022, 54: 383-412. |
2 | 甘文彪, 庄俊杰, 向锦武, 等. 临近空间低动态飞行器螺旋桨流动控制研究进展[J]. 航空学报, 2024, 45(17): 530086. |
GAN W B, ZHUANG J J, XIANG J W, et al. Research progress on flow control of propeller for low dynamic near-space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530086 (in Chinese). | |
3 | 朱广生, 姚世勇, 段毅. 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报, 2023, 44(15): 529049. |
ZHU G S, YAO S Y, DUAN Y. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049 (in Chinese). | |
4 | HUADAN C R, LIU Z W, HUO W Z, et al. Optimization of a novel biomimetic vortex generator structure based on cavitation intensity and stability control[J]. Physics of Fluids, 2024, 36(11): 113322. |
5 | NEMATOLLAHI O, NILI-AHMADABADI M, SEO H, et al. Effect of acicular vortex generators on the aerodynamic features of a slender delta wing[J]. Aerospace Science and Technology, 2019, 86: 327-340. |
6 | 李思成, 王晋军, 潘翀, 等. 扰流板作用下湍流/非湍流界面特性[J]. 气体物理, 2022, 7(6): 63-73. |
LI S C, WANG J J, PAN C, et al. Properties of the turbulent/non-turbulent interface under the influence of fence[J]. Physics of Gases, 2022, 7(6): 63-73 (in Chinese). | |
7 | 练真增, 张晖, 阎文成, 等. 基于扰流板的通用飞机横航向稳定性的改善措施研究[J]. 实验流体力学, 2021, 35(5): 34-39. |
LIAN Z Z, ZHANG H, YAN W C, et al. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39 (in Chinese). | |
8 | WEN X, SONG J S, YANG F, et al. Pressure-sensitive paint measurement of a subsonic diffuser controlled by sweeping jets[J]. AIAA Journal, 2022, 60(12): 6963-6970. |
9 | 罗振兵, 谢玮, 解旭祯, 等. 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023, 44(15): 529002. |
LUO Z B, XIE W, XIE X Z, et al. Research progress of active flow control of shock wave and its interaction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529002 (in Chinese). | |
10 | 仇梓豪, 李子焱, 周楷文, 等. 振荡射流控制方法在无舵面飞行控制中的应用[J]. 实验流体力学, 2023, 37(4): 116-125. |
QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 (in Chinese). | |
11 | AIAA names top 10 emerging aerospace technologies of 2009[EB/OL]. [2024-12-31]. . |
12 | FELDSTEIN A W, ULECK K R, FLOYD J, et al. Preliminary design of coplanar joined wing aircraft with integrated active flow control[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
13 | GRAY C, ULECK K R, FELDSTEIN A W, et al. Sizing, integration and characterization of an active flow control system[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
14 | ZELMAN S, SILIC M, CHAN S N. Integration of active flow control effectors into aircraft control laws[C]∥ AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
15 | 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264, 251. |
LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264, 251 (in Chinese). | |
16 | GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503-529. |
17 | 陆逸然, 王晋军. 高效合成射流激励器研究进展及展望[J]. 力学进展, 2024, 54(1): 61-85. |
LU Y R, WANG J J. Review and prospect on the efficient synthetic jet[J]. Advances in Mechanics, 2024, 54(1): 61-85 (in Chinese). | |
18 | XU C Y, WANG J J. Vortex ring breakdown dominating the entrainment of a synthetic jet[J]. Journal of Fluid Mechanics, 2024, 980: A5. |
19 | SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297. |
20 | VAN BUREN T, WHALEN E, AMITAY M. Achieving a high-speed and momentum synthetic jet actuator[J]. Journal of Aerospace Engineering, 2016, 29(2): 04015040. |
21 | HONG M H, CHENG S Y, ZHONG S. Effect of geometric parameters on synthetic jet: A review[J]. 2020, 32(3): 031301. |
22 | GUNGORDU B, JABBAL M, POPOV A A. Enhancing jet velocity and power conversion efficiency of piezoelectric synthetic jet actuators[J]. AIAA Journal, 2023, 61(10): 4321-4331. |
23 | 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234. |
LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese). | |
24 | 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(技术科学), 2008, 38(3): 321-349. |
ZHANG P F, WANG J J, FENG L H. Research progress of zero mass jet technology and its application[J]. Science in China (Technologica), 2008, 38(3): 321-349 (in Chinese). | |
25 | GRECO C S, CARDONE G, SORIA J. On the behaviour of impinging zero-net-mass-flux jets[J]. Journal of Fluid Mechanics, 2017, 810: 25-59. |
26 | 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科技大学, 2006. |
LUO Z B. Mechanism of synthetic jet/synthetic double jet and its application in jet vector control and micropump[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
27 | LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418-2420. |
28 | 罗振兵. 合成射流流动机理及应用技术研究[D]. 长沙: 国防科技大学, 2002. |
LUO Z B. Study on flow mechanism and application technology of synthetic jet[D]. Changsha: National University of Defense Technology, 2002 (in Chinese). | |
29 | YONG L. Control of two dimensional jets using miniature zero mass flux jets[J]. Chinese Journal of Aeronautics, 2000, 13(3): 129-133. |
30 | TRÁVNı́ČEK Z, TESAŘ V. Annular synthetic jet used for impinging flow mass-transfer[J]. International Journal of Heat and Mass Transfer, 2003, 46(17): 3291-3297. |
31 | LEE C, HONG G, HA Q P, et al. A piezoelectrically actuated micro synthetic jet for active flow control[J]. Sensors and Actuators A: Physical, 2003, 108(1-3): 168-174. |
32 | RUMSEY C L, GATSKI T B, SELLERS W L, et al. Summary of the 2004 computational fluid dynamics validation workshop on synthetic jets[J]. AIAA Journal, 2006, 44(2): 194-207. |
33 | SMITH B, TRAUTMAN M, GLEZER A. Controlled interactions of adjacent synthetic jets[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
34 | SMITH B L, GLEZER A. Vectoring of adjacent synthetic jets[J]. AIAA Journal, 2005, 43(10): 2117-2124. |
35 | 高峰, 汪亮. 双微射流作动器合成流场数值模拟[J]. 空气动力学学报, 2003, 21(3): 267-274. |
GAO F, WANG L. Numerical study on synthetic flow field of adjacent microjet actuators[J]. Acta Aerodynamica Sinica, 2003, 21(3): 267-274 (in Chinese). | |
36 | 罗振兵, 夏智勋, 胡建新, 等. 相邻激励器合成射流流场数值模拟及机理研究[J]. 空气动力学学报, 2004, 22(1): 52-59. |
LUO Z B, XIA Z X, HU J X, et al. Numerical simulation and mechanism study of the interaction of adjacent synthetic jet actuators[J]. Acta Aerodynamica Sinica, 2004, 22(1): 52-59 (in Chinese). | |
37 | BERK T, GOMIT G, GANAPATHISUBRAMANI B. Vectoring of parallel synthetic jets: A parametric study[J]. Journal of Fluid Mechanics, 2016, 804: 467-489. |
38 | JANKEE G K, GANAPATHISUBRAMANI B. Interaction and vectoring of parallel rectangular twin jets in a turbulent boundary layer[J]. Physical Review Fluids, 2021, 6(4): 044701. |
39 | LUO Z B, XIA Z X. The mechanism of jet vectoring using synthetic jet actuators[J]. Modern Physics Letters B, 2005, 19(28-29): 1619-1622. |
40 | 邓雄, 夏智勋, 罗振兵, 等. 非对称出口合成双射流激励器矢量特性实验研究[J]. 航空学报, 2015, 36(2): 510-517. |
Deng X, Xia Z X, Luo Z B, et al. Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetricexits[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2):510-517 (in Chinese). | |
41 | LIU Z Y, LUO Z B, LIU Q, et al. Self-support phenomenon and formation characteristics of dual synthetic jet[J]. Sensors and Actuators A: Physical, 2019, 299: 111597. |
42 | 邓雄. 合成双射流矢量控制特性及其强化换热应用研究[D]. 长沙: 国防科技大学, 2015. |
DENG X. Study on vector control characteristics of synthetic double jet and its application in enhancing heat transfer[D]. Changsha: National University of Defense Technology, 2015 (in Chinese). | |
43 | 张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学(技术科学), 2012, 42(9): 1046-1053. |
ZHANG P F, YAN B, DAI C F. Lift enhancement method by synthetic jet circulation control[J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053 (in Chinese). | |
44 | 张艳华, 张登成, 周章文, 等. 基于环量控制的虚拟舵面飞行器概念与设计综述[J]. 航空学报, 2024, 45(6): 629608. |
ZHANG Y H, ZHANG D C, ZHOU Z W, et al. Concept and design of virtual rudder surface aircraft based on circulation control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629608 (in Chinese). | |
45 | LI S Q, LUO Z B, DENG X, et al. Numerical simulation investigation on the suction stroke and blowing stroke of synthetic jet circulation control[J]. Acta Mechanica Sinica, 2022, 39(6): 322352. |
46 | LI S Q, LUO Z B, DENG X, et al. Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2022, 35(12): 117-129. |
47 | LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1-6. |
48 | 王万波, 姜裕标, 黄勇, 等. 大型飞机襟翼吹气增升风洞试验[J]. 航空学报, 2023, 44(13): 127870. |
WANG W B, JIANG Y B, HUANG Y, et al. Lift enhancement wind tunnel test with flap blowing for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127870 (in Chinese). | |
49 | 张刘, 姜裕标, 何萌, 等. 内吹式襟翼控制机理和失速特性[J]. 空气动力学学报, 2021, 39(5): 53-62. |
ZHANG L, JIANG Y B, HE M, et al. Stall characteristics and circulation control of internally blown flap[J]. Acta Aerodynamica Sinica, 2021, 39(5): 53-62 (in Chinese). | |
50 | ALEY K S, GUHA T K, KUMAR R. Active flow control of a high-lift supercritical airfoil with microjet actuators[J]. AIAA Journal, 2020, 58(5): 2053-2069. |
51 | DESALVO M, WHALEN E, GLEZER A. High-lift performance enhancement using active flow control[J]. AIAA Journal, 2020, 58(10): 4228-4242. |
52 | 张鉴源, 罗振兵, 彭文强, 等. 基于合成双射流的襟翼舵效增强技术研究[J]. 实验流体力学, 2023, 37(4): 76-86. |
ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 (in Chinese). | |
53 | 王海峰. 高性能协同作战无人机的发展与思考[J]. 航空学报, 2024, 45(17): 530304. |
WANG H F. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304 (in Chinese). | |
54 | WANG Q M, FENG L H, LI X. Experimental investigation of synthetic jet control of wing rock for a flying wing aircraft[J]. 2023, 35(5): 054111. |
55 | 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353. |
FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527353 (in Chinese). | |
56 | 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性[J]. 航空学报, 2023, 44(4): 126449. |
WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126449 (in Chinese). | |
57 | VEISMANN M, GHARIB M, TAUBERT L, et al. Effect of leading-edge cranks on stability and control of active-flow-control-enabled tailless aircraft[J]. AIAA Journal, 2023, 61(9): 3848-3865. |
58 | 张杰, 李王斌, 王争取, 等. 小展弦比飞翼标模跨声速横向失稳运动[J]. 航空学报, 2022, 43(11): 526340. |
ZHANG J, LI W B, WANG Z Q, et al. Transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526340 (in Chinese). | |
59 | LÖCHERT P, HUBER K C, GHOREYSHI M, et al. Control device effectiveness studies of a 53° swept flying wing configuration. Experimental, computational, and modeling considerations[J]. Aerospace Science and Technology, 2019, 93: 105319. |
60 | ZHAO Z J, LUO Z B, DENG X, et al. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout[J]. Aerospace Science and Technology, 2023, 132: 108043. |
61 | 邓雄, 赵志杰, 王秋旺, 等. 基于前缘合成双射流的飞翼布局纵向气动控制特性研究[J]. 空气动力学学报, 2022, 40(5): 79-90. |
DENG X, ZHAO Z J, WANG Q W, et al. Research on longitudinal aerodynamic control characteristics of flying wing based on leading-edge dual synthetic jets[J]. Acta Aerodynamica Sinica, 2022, 40(5): 79-90 (in Chinese). | |
62 | 王磊, 王立新, 贾重任. 飞翼布局飞机开裂式方向舵的作用特性和使用特点[J]. 航空学报, 2011, 32(8): 1392-1399. |
WANG L, WANG L X, JIA Z R. Control features and application characteristics of split drag rudder utilized by flying wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1392-1399 (in Chinese). | |
63 | 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究[J]. 实验流体力学, 2010, 24(3): 63-66. |
ZHANG Z J, LI J, LI T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66 (in Chinese). | |
64 | 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. |
ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422 (in Chinese). | |
65 | 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3): 296-301. |
SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3): 296-301 (in Chinese). | |
66 | 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11): 2435-2442. |
ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surfaces for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2435-2442 (in Chinese). | |
67 | STENFELT G, RINGERTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009, 46(6): 2161-2164. |
68 | ZHAO Z J, LUO Z B, DENG X, et al. Novel yaw effector of a flying wing aircraft based on reverse dual synthetic jets[J]. Chinese Journal of Aeronautics, 2023, 36(12): 151-163. |
69 | ZHAO Z J, DENG X, LUO Z B, et al. Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets[J]. 2023, 35(5): 057110. |
70 | WANG H, LUO Z B, DENG X, et al. Enhancement of flying wing aerodynamics in crossflow at high angle of attack using dual synthetic jets[J]. Aerospace Science and Technology, 2025, 156: 109773. |
71 | 王浩, 罗振兵, 邓雄, 等. 基于合成双射流的翼型阵风载荷减缓[J]. 航空学报, 2024, 45(16): 129660. |
WANG H, LUO Z B, DENG X, et al. Airfoil gust load alleviation based on dual synthetic jets[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129660 (in Chinese). | |
72 | ZHOU Y H, GU Y S, LI L K, et al. Research on fluidic thrust vector technology based on passive secondary flow with dual inclined walls under low subsonic speed[J]. Experimental Thermal and Fluid Science, 2024, 155: 111200. |
73 | 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. |
GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609 (in Chinese). | |
74 | 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. |
XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15 (in Chinese). | |
75 | SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics, 2002, 458: 1-34. |
76 | LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193-201. |
77 | LIU J F, LUO Z B, DENG X, et al. Dual synthetic jets actuator and its applications: PartⅡ: Novel fluidic thrust-vectoring method based on dual synthetic jets actuator[J]. Actuators, 2022, 11(8): 209. |
78 | BRANDT S, MCLAUGHLIN T E, WILLIAMS D R, et al. NATO AVT-239 task group: flight test of compressed and bleed-air driven control effectors on the ICE/SACCON UAS subscale aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
79 | NIESTROY M A, WILLIAMS D R, SEIDEL J. NATO AVT-239 task group: Active flow control simulation of the tailless ICE aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
80 | WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. |
81 | YARF-ABBASI A, FIELDING J. Design integration of the eclipse and demon demonstrator UAVs[C]∥7th AIAA ATIO Conf, 2nd CEIAT Int’l Conf on Innov and Integr in Aero Sciences, 17th LTA Systems Tech Conf; followed by 2nd TEOS Forum. Reston: AIAA, 2007. |
82 | WARSOP C, CROWTHER W. NATO AVT-239 task group: flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
83 | 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. |
SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080 (in Chinese). | |
84 | CHEN K, SHI Z W, ZHU J C, et al. Roll aerodynamic characteristics study of an unmanned aerial vehicle based on circulation control technology[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 871-882. |
85 | 张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术, 2020, 31(5): 50-55. |
ZHANG T R, LV X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science & Technology, 2020, 31(5): 50-55 (in Chinese). | |
86 | 邵帅, 郭正, 贾高伟, 等. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 54-64. |
SHAO S, GUO Z, JIA G W, et al. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 54-64 (in Chinese). | |
87 | 张刘, 黄勇, 陈辅政, 等. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224. |
ZHANG L, HUANG Y, CHEN F Z, et al. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128224 (in Chinese). | |
88 | 赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220-1228. |
ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 (in Chinese). | |
89 | ZHAO Z J, ZHANG J Y, DENG X, et al. Flight test of flying wing aircraft controlled by dual synthetic jets at Ma0.2[J]. Aerospace Science and Technology, 2024, 144: 108779. |
90 | 任靖豪, 王强, 陈宁立, 等. 多段翼构型结冰计算方法及结冰影响分析[J]. 航空学报, 2024, 45(14): 129328. |
REN J H, WANG Q, CHEN N L, et al. Numerical simulation and aerodynamic performance effects of multi-element airfoil ice accretion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129328 (in Chinese). | |
91 | WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics, 2021, 34(10): 1-5. |
92 | XIE L K, LIANG H, ZONG H H, et al. Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in one[J]. 2022, 34(7): 071701. |
93 | 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31-49. |
MENG X S, HUI W W, YI X, et al. Anti-/de-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31-49 (in Chinese). | |
94 | 孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. |
MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6): 901-916 (in Chinese). | |
95 | GAO T X, LUO Z B, ZHOU Y, et al. Reducing the contact time of impacting droplets on superhydrophobic surfaces using dual synthetic jets[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108095. |
96 | 高天翔, 罗振兵, 周岩, 等. 合成双射流控制水滴轨迹特性实验研究[J]. 航空学报, 2025, doi: 10.7527/S1000-6893.2024.30833 . |
GAO T X, LUO Z B, ZHOU Y, et al. Experimental investigation on the trajectory characteristics of a single micro water droplet controlled by dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2025, doi: 10.7527/S1000-6893.2024.30833 (in Chinese). | |
97 | 李玉杰. 基于合成双射流的机翼分离流控制及结冰控制研究[D]. 长沙: 国防科技大学, 2015. |
LI Y J. Research on airfoil separate flow control and airfoil icing control using dual synthetic jet actuator[D]. Changsha: National University of Defense Technology, 2015 (in Chinese). | |
98 | 蒋浩. 合成热射流防/除冰技术研究[D]. 长沙: 国防科技大学, 2017. |
JIANG H. Research on anti-icing/de-icing using the heated dual synthetic jet technology[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
99 | YANG S K, YI X, GUO Q L, et al. Novel hybrid ice protection system combining thermoelectric system and synthetic jet actuator[J]. AIAA Journal, 2020, 59(4): 1496-1500. |
100 | WANG Y N, WANG L, ZHOU Y, et al. Research progress on transpiration cooling technology in force-thermal concentrated environments[J]. International Journal of Heat and Mass Transfer, 2025, 236: 126262. |
101 | ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. |
102 | DENG X, LUO Z B, XIA Z X, et al. Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator[J]. Energy Conversion and Management, 2017, 132: 207-212. |
103 | DENG X, DONG Z F, LIU Q, et al. Dual synthetic jets actuator and its applications: Part Ⅲ: Impingement flow field and cooling characteristics of vectoring dual synthetic jets[J]. Actuators, 2022, 11(12): 376. |
104 | DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal, 2014, 53(3): 794-797. |
105 | HE W, LUO Z B, DENG X, et al. A novel spray cooling device based on a dual synthetic jet actuator integrated with a piezoelectric atomizer[J]. Heat and Mass Transfer, 2020, 56(5): 1551-1563. |
106 | 何伟. 合成双射流喷雾与强化换热特性研究[D]. 长沙: 国防科技大学, 2019. |
HE W. Study on the spray and its characteristics of heat transfer enhancement based on dual synthetic jets[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
107 | HE W, LUO Z B, DENG X, et al. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118406. |
108 | HE W, LUO Z B, DENG X, et al. Experimental investigation on the vectoring spray based on a novel synthetic jet actuator[J]. Applied Thermal Engineering, 2020, 179: 115677. |
109 | LUO Z B, HE W, DENG X, et al. A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon[J]. Energy, 2023, 263: 125757. |
110 | KANG Y, LUO Z B, DENG X, et al. Numerical study of a liquid cooling device based on dual synthetic jets actuator[J]. Applied Thermal Engineering, 2023, 219: 119691. |
111 | KANG Y, XIA Z X, LUO Z B, et al. Experimental study on a dual synthetic jets liquid cooling device[J]. Applied Energy, 2024, 372: 123865. |
112 | WANG Q F, ZHANG S Q, ZHANG Y, et al. Enhancing performance of nanofluid mini-channel heat sinks through machine learning and multi-objective optimization of operating parameters[J]. International Journal of Heat and Mass Transfer, 2023, 210: 124204. |
113 | LALAGI G, NAGARAJ P B, TALUGERI V, et al. Study on heat transfer and pressure drop characteristics for nanofluids in microchannel heat exchangers[J]. 2023, 35(10): 102015. |
114 | MOHAMMADPOUR J, LEE A, MOZAFARI M, et al. Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models[J]. International Journal of Thermal Sciences, 2021, 161: 106705. |
115 | LAU G E, MOHAMMADPOUR J, LEE A. Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach[J]. Applied Thermal Engineering, 2021, 188: 116624. |
116 | 董昭锋, 邓雄, 罗振兵, 等. 基于合成双射流的Al2O3纳米流体散热数值研究[J]. 空气动力学学报, 2024, 42(8): 10-22. |
DONG Z F, DENG X, LUO Z B, et al. Numerical investigation on heat dissipation of Al2O3 nanofluid based on dual synthetic jets[J]. Acta Aerodynamica Sinica, 2024, 42(8): 10-22 (in Chinese). | |
117 | 彭磊. 水下合成双射流流场特性与推力特性研究[D]. 长沙: 国防科技大学, 2016. |
PENG L. Research on characteristics of flow field and propulsion of underwater dual synthetic jets[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). |
[1] | Jinwu XIANG, Kai MA, Zi KAN, Daochun LI, Kexin ZHENG, Hanxuan CHEN. Review of key technologies for hydrogen powered unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531603-531603. |
[2] | Xudong LI, Wei ZHONG, Zhen WANG, Tongguang WANG, Jinlong LI. Ratio of propeller thrust to total thrust of ducted propellers [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 230829-230829. |
[3] | Xianzhao YANG, Gaowen LIU, Lingying GUO, Jiale MA, Aqiang LIN. Design of turbine high radius pre-swirl system with high temperature drop [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130672-130672. |
[4] | Jing YAO, Shuai YANG, Mengyang WANG, Pei WANG. Modeling, performance analysis and test verification of a low-power digital valve [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 430747-430747. |
[5] | Haifeng WANG, Kunpeng LIU, Hongxin JIANG, Chenxi DU. Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528831-528831. |
[6] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
[7] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[8] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[9] | Huitao FAN, Pengfei DUAN, Cheng YUAN. Disruptive technologies in aviation: Preliminary study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529893-529893. |
[10] | Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978-529978. |
[11] | Weiping YANG. Development trend of navigation guidance and control technology for new generation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720-529720. |
[12] | Zhenyang HAO, Fengtao SUN, Zhihao JI, Xinyuan JING, Xin CAO. An improved closed⁃loop I/f control method for aero⁃generator systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328678-328678. |
[13] | Yanxiang HOU, Lihao FENG. Wind tunnel virtual flight test of flying wing configuration with active flow control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630636-630636. |
[14] | Shougen ZHAO, Xianhao WANG, Ruili XIE, Ming LI, Wei CHENG. Fatigue life estimation method for random vibration based on power spectral density segmentation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 230265-230265. |
[15] | Chengpeng LIU, Wenping SONG, Changhao GAO, Shaoqiang HAN, Yue WANG, Zhonghua HAN. Air-to-air missile post-stall flip backward launch method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 129880-129880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341