Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 128919-128919.doi: 10.7527/S1000-6893.2023.28919
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Zhongqi LIU1, Xuyang HU1, Haining LUO2, Xiaoming WANG2, Sujun DONG1()
Received:
2023-04-23
Revised:
2023-05-14
Accepted:
2023-05-22
Online:
2024-04-15
Published:
2023-05-24
Contact:
Sujun DONG
E-mail:dsj@buaa.edu.cn
CLC Number:
Zhongqi LIU, Xuyang HU, Haining LUO, Xiaoming WANG, Sujun DONG. Simulation and optimization of thermal comfort of fighter cockpit environment[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128919-128919.
Table 4
Overall thermal comfort and temperature non⁃uniformity coefficient with flow change of 2.5% at only one type of air supply outlet
流量变化位置 | 整体热舒适性C | 温度不均匀系数μ | ||
---|---|---|---|---|
绝对变化量 | 相对变化量/% | 绝对变化量 | 相对变化量/% | |
胸前喷头 | 0.020 | 0.6 | 0.000 414 | 2.1 |
臂部喷头 | -0.012 | -0.3 | 0.000 966 | 4.8 |
头部多孔喷管 | -0.019 | -0.5 | -0.000 690 | -3.4 |
小腿两侧多孔喷管 | -0.011 | -0.3 | 0.001 380 | 6.9 |
1 | ZHOU B Y, DING L, CHEN B, et al. Physiological characteristics and operational performance of pilots in the high temperature and humidity fighter cockpit environments[J]. Sensors, 2021, 21(17): 5798. |
2 | SCHMINDER J, GÅRDHAGEN R. A generic simulation model for prediction of thermal conditions and human performance in cockpits[J]. Building and Environment, 2018, 143: 120-129. |
3 | FAN J L, ZHOU Q Y. A review about thermal comfort in aircraft[J]. Journal of Thermal Science, 2019, 28(2): 169-183. |
4 | FANGER P O. Thermal comfort[M]. New York: McGraw-Hill, 1972:1-15. |
5 | SHI X D, CHAO D, ZHANG Y, et al. The study of air supply ways effects on the aircraft cabin thermal environment[C]∥ WANG R, CHEN Z, ZHANG W, et al. Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Singapore: Springer, 2020: 123-131. |
6 | YAN Y H, LI X R, TAO Y, et al. Numerical investigation of pilots’ micro-environment in an airliner cockpit[J]. Building and Environment, 2022, 217: 109043. |
7 | Kuznetz LH. Analysis of the effects of free stream gas velocity upon astronaut thermal comfort: NASA TM-79823[R]. Washington, D.C.: NASA, 1978. |
8 | 林国华, 袁修干, 杨燕生. 人机环境系统中CFD的研究[J]. 航空学报, 1999, 20(): 22-24. |
LIN G H, YUAN X G, YANG Y S. CFD applications in the MMES industry[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup 1): 22-24 (in Chinese). | |
9 | 沈海峰, 袁修干. 歼击机座舱空气流动和传热的数值模拟与实验[J]. 航空学报, 2009, 30(1): 30-39. |
SHEN H F, YUAN X G. Numerical simulation and experiment on air flow and heat transfer in fighter plane cockpit[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 30-39 (in Chinese). | |
10 | XUE Y, ZHAI Z J, CHEN Q Y. Inverse prediction and optimization of flow control conditions for confined spaces using a CFD-based genetic algorithm[J]. Building and Environment, 2013, 64: 77-84. |
11 | PANG L P, LI P, BAI L Z, et al. Optimization of air distribution mode coupled interior design for civil aircraft cabin[J]. Building and Environment, 2018, 134: 131-145. |
12 | LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings, 2015, 104: 147-155. |
13 | 宁献文, 张利珍, 王浚. 旅客机座舱热舒适动态特性仿真[J]. 航空学报, 2006, 27(4): 551-555. |
NING X W, ZHANG L Z, WANG J. Simulation of dynamic characteristics for airliner cabin thermal comfort[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 551-555 (in Chinese). | |
14 | 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3): 819-826. |
SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 819-826 (in Chinese). | |
15 | 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8): 121089. |
LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121089 (in Chinese). | |
16 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: Local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388. |
17 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part II: local comfort of individual body parts[J]. Building and Environment, 2010, 45(2): 389-398. |
18 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410. |
19 | ZHOU X J, LAI D Y, CHEN Q Y. Thermal sensation model for driver in a passenger car with changing solar radiation[J]. Building and Environment, 2020, 183: 107219. |
20 | LI W J, CHEN J Q, LAN F C, et al. Numerical projection on occupant thermal comfort via dynamic responses to human thermoregulation[J]. International Journal of Automotive Technology, 2022, 23(1): 193-203. |
21 | VOELKER C, ALSAAD H. Simulating the human body’s microclimate using automatic coupling of CFD and an advanced thermoregulation model[J]. Indoor Air, 2018, 28(3): 415-425. |
22 | FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159. |
23 | 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 62-84. |
SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 62-84 (in Chinese). | |
24 | PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948[J]. Journal of Applied Physiology, 1998, 85(1): 5-34. |
25 | 马越崎. 某型飞机空调性能优化分析及改进[J]. 流体测量与控制, 2022, 3(2): 41-45. |
MA Y Q. Improve and research on the air conditioner of certain aircraft[J]. Fluid Measurement & Control, 2022, 3(2): 41-45 (in Chinese). |
[1] | Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978-529978. |
[2] | Yueliang CHEN, Shengjun WU, Guixue BIAN, Yong ZHANG, Zhuzhu ZHANG. Calendar life design method for critical fatigue parts of fighter based on DFR method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227614-227614. |
[3] | SUN Cong. Development trend of future fighter: A review of evolution of winning mechanism in air combat [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525826-525826. |
[4] | LI Yuhai, WANG Chengbo, CHEN Liang, DONG Hongda, GUAN Yu, DI Hongliang, GU Yuxuan. Overview on development of advanced fighter life design and extension technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525791-525791. |
[5] | LU Yujin, XIAO Tianhang, DENG Shuanghou, ZHI Haolin, ZHU Zhenhao, LU Zhaoyan. Effects of initial conditions on water landing performance of amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124483-124483. |
[6] | DONG Lei, XIANG Chenyang, ZHAO Changxiao, DANG Xiangjun, SHI Chunlei. Comprehensive evaluation of ergonomics of civil aircraft cockpit display touch control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 624053-624053. |
[7] | JIA Chaowen, FENG Bing, YAN Bo, YANG Yang, ZHANG Xueshuai, LIU Xiang, LI Yanping. Overall design of fighter electronic warfare system architecture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324507-324507. |
[8] | SONG Wei, AI Bangcheng, JIANG Zenghui, LU Wei. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523415-523415. |
[9] | LI Qiuyan, LI Gang, WEI Yangtian, RAN Yuguo, WU Bo, TAN Guanghui, LI Yan, CHEN Shi, LEI Boqi, XU Qinwei. Review of aeroelasticity design for advanced fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523430-523430. |
[10] | WANG Yupeng, PEI Lianjie, LI Qiulong, ZHENG Jianjun, FENG Jianmin, WANG Fan. Full-scale aircraft strength test technology of next generation fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523482-523482. |
[11] | TU Min, YUAN Gengmin, XUE Fei, WANG Xiaoming. Application of integrated thermal management in development of advanced fighter system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523629-523629. |
[12] | YANG Wei. Development of future fighters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 524377-524377. |
[13] | CHENG Ronghui, ZHANG Zhishu, CHEN Zhongguang. Technical characteristics and implementation of the fourth-generation jet fighter engines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22698-022698. |
[14] | XU Jian, WU Lei, CHU Jiangping, HE Ke. Performance analysis of information reconfiguration technology on civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522442-522442. |
[15] | SHEN Zhengyang, CHEN Xiaoming, HUANG Lingcai. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522400-522400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341