[1] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1):522708. HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522708(in Chinese). [2] YANG X B, WANG T M, LIANG J H, et al. Survey on the novel hybrid aquatic-aerial amphibious aircraft:Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74:131-151. [3] ROZHDESTVENSKY K V. Wing-in-ground effect vehicles[J]. Progress in Aerospace Sciences, 2006, 42(3):211-283. [4] 申蒸洋, 陈孝明, 黄领才. 大型水陆两栖飞机特殊任务模式对总体设计的挑战[J]. 航空学报, 2019, 40(1):522400. SHEN Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522400(in Chinese). [5] WANG L X, YIN H P, YANG K, et al. Water takeoff performance calculation method for amphibious aircraft based on digital virtual flight[J]. Chinese Journal of Aeronautics, 2020, 33(12):3082-3091. [6] 黄淼, 褚林塘, 李成华, 等. 大型水陆两栖飞机抗浪能力研究[J]. 航空学报, 2019, 40(1):522335. HUANG M, CHU L T, LI C H, et al. Seakeeping performance research of large amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522335(in Chinese). [7] 唐彬彬, 吴彬, 王明振, 等. 抑波槽宽度对水陆两栖飞机喷溅性能影响对比试验研究[J]. 航空科学技术, 2015, 26(1):73-78. TANG B B, WU B, WANG M Z, et al. Comparative test study for the effect of groove type spray suppressor widths on amphibious aircraft spray performance[J]. Aeronautical Science & Technology, 2015, 26(1):73-78(in Chinese). [8] NASA. PB2Y-3 aircraft model test[EB/OL]. (2011-05-19)[2020-05-26]. https://www.youtube.com/watch?v=vA-OLK94Vi4. [9] NASA. Gru mman JRF-5 water landings[EB/OL]. (2011-07-15)[2020-05-26]. https://www.youtube.com/watch?v=y9ESt4Ut0eU. [10] 唐彬彬, 张家旭, 李成华, 等. 水陆两栖飞机模型喷溅峰点分析方法研究[J]. 航空计算技术, 2015, 45(6):45-46, 51. TANG B B, ZHANG J X, LI C H, et al. Study on analytical method for spray peaks of amphibious aircraft[J]. Aeronautical Computing Technique, 2015, 45(6):45-46, 51(in Chinese). [11] 段旭鹏, 孙卫平, 魏猛, 等. 基于OpenFOAM的水陆两栖飞机水面高速滑行研究[J]. 航空学报, 2019, 40(1):522330. DUAN X P, SUN W P, WEI M, et al. Numerical simulation of amphibious aircraft taxiing at high speed on water using OpenFOAM[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522330(in Chinese). [12] DUAN X P, SUN W P, CHEN C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology, 2019, 84:980-994. [13] 马增辉, 刘立胜, 岳珍, 等. 水陆两栖飞机波浪水面上降落耐波性数值分析[J]. 计算力学学报, 2018, 35(3):380-386. MA Z H, LIU L S, YUE Z, et al. Numerical investigation on seakeeping performance of amphibious aircraft landing on waves[J]. Chinese Journal of Computational Mechanics, 2018, 35(3):380-386(in Chinese). [14] 孙丰, 吴彬, 廉滋鼎, 等. 着水姿态对大型水陆两栖飞机着水性能的影响[J]. 船舶力学, 2019, 23(4):397-404. SUN F, WU B, LIAN Z D, et al. Influence of pitch angle on water-entry performance of large-scale amphibian aircraft hull[J]. Journal of Ship Mechanics, 2019, 23(4):397-404(in Chinese). [15] QIU L J, SONG W B. Efficient decoupled hydrodynamic and aerodynamic analysis of amphibious aircraft water takeoff process[J]. Journal of Aircraft, 2013, 50(5):1369-1379. [16] QIU L J, SONG W B. Efficient multiobjective optimization of amphibious aircraft fuselage steps with decoupled hydrodynamic and aerodynamic analysis models[J]. Journal of Aerospace Engineering, 2016, 29(3):04015071. [17] SIEMANN M H, LANGRAND B. Coupled fluid-structure computational methods for aircraft ditching simulations:Comparison of ALE-FE and SPH-FE approaches[J]. Computers & Structures, 2017, 188:95-108. [18] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. [19] 孙华伟. 滑行面形状对滑行艇阻力与航态影响数值分析[D]. 哈尔滨:哈尔滨工程大学, 2012:42-43. SUN H W. Numerical analysis of planing-hull surface shape on resistance and sailing attitude[D]. Harbin:Harbin Engineering University, 2012:42-43(in Chinese). [20] 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报, 2017, 38(增刊1):721498. LU Y J, XIAO T H, LI Z Z. Numerical simulation of high speed plate ditching[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Sup1):721498(in Chinese). [21] 金禹彤, 陈吉昌, 卢昱锦, 等. 楔形体入波浪水面数值模拟[J]. 航空学报, 2019, 40(10):122854. JIN Y T, CHEN J C, LU Y J, et al. Numerical simulation of wedge impacting on wavy water[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122854(in Chinese). [22] XU L, TROESCH A W, PETERSON R. Asymmetric hydrodynamic impact and dynamic response of vessels[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(2):83-89. [23] PANCIROLI R, ABRATE S, MINAK G. Dynamic response of flexible wedges entering the water[J]. Composite Structures, 2013, 99:163-171. [24] MEI X M, LIU Y M, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1):1-15. [25] 褚林塘. 水上飞机水动力设计[M]. 北京:航空工业出版社, 2014:84-93. CHU L T. Seaplane hydrodynamic design[M]. Beijing:Aviation Industry Press, 2014:84-93(in Chinese). |