ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (6): 524377-524377.doi: 10.7527/S1000-6893.2020.24377
• Perspective • Previous Articles
YANG Wei
Received:
2020-06-02
Revised:
2020-06-05
Online:
2020-06-15
Published:
2020-06-12
CLC Number:
YANG Wei. Development of future fighters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 524377-524377.
[1] | TIRPAK J A. Air force creates new PEO for NGAD, applying "Digital Century Series" idea[EB/OL]. (2019-10-14)[2020-06-02]. http://airforcemag.com/Features/Pages/2019/October%202019/Air-Force-Creates-New-PEO-for-NGAD-Applying-Digital-Century-Series-Idea.aspx. |
[2] | Department of the Air Force. Department of Defense Fiscal Year (FY) 2021 budget estimates air force jus-tification book Volume 2 of 3 Research, development, test & evaluation[EB/OL]. (2020-02-12)[2020-06-02]. https://www.saffm.hq.af.mil/Portals/84/documents/FY21/RDTE_/FY21%20Air%20Force%20Research%20Development%20Test%20and%20Evaluation%20Vol%20II.pdf?ver=2020-02-12-145218-377. |
[3] | GUNZINGER M, REHBERG C, JACOB C. An air force for an era of great power competition[R]. Washington, D.C.:Center for Strategic and Budgetary Assessments, 2019. |
[4] | GUNZINGER M, REHBERG C, AUTENRIED L. Five priorities for the air force's future combat air force[R]. Washington, D.C.:Center for Strategic and Budgetary Assessments, 2020. |
[5] | Air Power. The@usairforce plans to spend MYM11+ Bn, b/w FY 2019 and FY2025, to develop and mature tech-nologies related to the Next Generation Air Dominance and Next Generation Adaptive Propulsion solutions[EB/OL]. (2020-02-29)[2020-04-17].https://twitter.com/MIL_STD/status/1233561215974232066/photo/1. |
[6] | GRYNKEWICH B G A. An operational imperative:the future of air superiority[R]. Mitchell:Mitchell Institute, 2017. |
[7] | 吴鸿遥,钟玲燕. 变后掠机翼的最近发展[J]. 现代航空, 1963, 11:1. WU H Y,ZHONG L Y. Recent development of varia-ble-sweep wings[J]. Modern Aviation, 1963, 11:1(in Chinese). |
[8] | GARWIN R, AMLIE T, GREENE T E, et al. Fighter aircraft report of the defense science board task force Volume II:basic report:050868FAD1[R]. Washington, D.C.:Office of the Director of Defense Research and Engineering, 1968. |
[9] | HIDMA A. Fighter requirements and developments:A74-38793[R]. Netherland:Netherlands Association of Aeronautical Engineers, 1974. |
[10] | GRASSET P. Dogfighting makes a comeback[J]. Interavia, 1974, 12:1188-1191. |
[11] | 刘真. 幻影-2000[J]. 航空知识, 1979(2):18-19. LIU Z. Mirage-2000[J]. Aerospace Knowledge, 1979(2):18-19(in Chinese). |
[12] | TAYLOR J. Future combat aircraft conference pro-ceedings[M]. London:Jane's Publishing Company Limited, 1987. |
[13] | BOYNE W. Generation gap[J]. Code One, 2005(4). |
[14] | MOTT W H. F-15A versus F/A-22 initial operational capability:A Case for transformation:MP-36[R]. Alabama:Air University Press, 2005. |
[15] | Committee on Armed Services. Hearings Before the Committee on Armed Services United States Senate One Hundred Ninth Congress Second Session on S. 2766 to authorize appropriations for fiscal year 2007 for military activities of the Department of Defense, for military construction, and for defense activities of the Department Of Energy, to prescribe personnel strengths for such fiscal year for the Armed Forces, and for other purposes, PART 4:AIRLAND:S.HRG. 109-827[R]. Washington, D.C.:Committee on Armed Services, 2006. |
[16] | STILLION J, PERDUE S. Air combat past, present and future[EB/OL]. (2008-12-10)[2020-04-17]. https://www.defenseindustrydaily.com/files/2008_RAND_Pacific_View_Air_Combat_Briefing.pdf. |
[17] | BENITEZ M. F-15EX:The strategic blind spot in the air force's fighter debate[EB/OL]. (2019-10-07)[2020-06-02]. https://warontherocks.com/2019/06/F-15ex-the-strategic-blind-spot-in-the-air-forces-fighter-debate/. |
[18] | USAF. Next Generation Tactical Aircarft (Next Gen TACAIR) Capability Request for Information (CRFI) version 1.01[EB/OL]. (2010-11-11)[2020-06-07]. https://www.fbo.gov/Next_Gen_TACAIR_CRFI_(V1_0)_10-18-2010.doc. |
[19] | Air Superiority 2030(AS 2030) Enterprise Capability Collaboration Team (ECCT). Air superiority 2030 flight plan[R]. USAF, 2016. |
[20] | BOYD J R. The essence of winning and losing[EB/OL]. (2016-03-13)[2020-06-07]. https://danford.net/boyd/essence.htm. |
[21] | SCHUCK T. OODA loop 2.0 information, not agility, is life[J]. Alumni Magazine, 2017(8):55-58. |
[22] | PINNEY C. Avionics architecture definition version 1.0:94J280/574[R]. Arlington:Joint Advanced Strike Technology Program, 1994. |
[23] | BLASCH E, HANSELMAN P. Information fusion for information superiority[C]//Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. Piscataway:IEEE Press, 2000:290-297. |
[24] | SHEILA B, CARL S. Lizza pilot's associate "a cooperative, knowledge-based system application"[R]. Washington, D.C.:Wright-Patterson Air Force Base, 1991. |
[25] | ERNEST N, CARROLL D. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016(6):1. |
[26] | RUTH D, PAUL N. Summer study on autonomy[R]. Washington, D.C.:Defense Science Board, 2016 |
[27] | KALLBERG J. Supremacy by accelerated warfare through the comprehension barrier and beyond:Reaching the zero domain and cyberspace singularity[EB/OL]. (2018-12-18)[2020-02-25]. https://cyberdefensereview.army.mil/Portals/6/Documents/CDR%20Journal%20Articles/Fall%202018/KALLBERG_CDR_V3N3.pdf?ver=2018-12-18-101631-953. |
[28] | CARTER A B. Autonomy in weapon systems:DOD directive 3000.09[S]. Washington, D.C.:Department of Defense, 2012. |
[29] | CLOUGH B T. Metrics, schmetrics! How the heck do you determine a uav's autonomy anyway?"[C]//Proceedings of the Performance Metrics for Intelligent Systems Workshop, 2002. |
[30] | ILACHINSKI A. AI, robots, and swarms (issues, questions, and recommended studies)[R]. Center for Naval Analyses (CAN), 2017. |
[31] | 2019 The United States Air Force artificial intelligence annex to the department of defense artificial intelli-gence strategy[R]. Washington D.C.:Department of the Air Force, 2019. |
[32] | ZACHARIAS G L. Autonomous horizons:The way forward[R]. Washington D.C.:Office of the USAF Chief Scientist, 2019. |
[33] | JAMES D L, WELSH M A. Air force future operating concept-A view of the air force in 2035[R]. 2015. |
[34] | GRANT R. U.S. air dominance in a fiscally-constrained environment:Defining paths to the future tactical aircraft and the preservation of U.S. air dominance[R]. Arlington:Lexington Institute, 2013. |
[35] | TIRPAK J A. Saving air superiority[J/OL]. Air Force Magazine, 2017, 100(4). https://www.airforcemag.com/article/saving-air-superiority/. |
[36] | Director, Systems and Software Engineering. Systems engineering guide for systems of systems, Version 1.0[M]. Washington, D.C.:Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering, 2008:3-6. |
[37] | GRAYSON T. Mosaic warfare[EB/OL]. (2018-07-27)[2020-04-16]. https://www.darpa.mil/attachments/STO-Mosaic-Distro-A.pdf. |
[38] | DEPTULA D A, PENNEY H R, STUTZRIEM L A. Restoring America's military competitiveness:Mosaic warfare[M]. Arlington:The Mitchell Institute for Aerospace Studies, 2019:34-36. |
[39] | CURTIS E. Lemay center for doctrine development and education. Reachback and distributed operations[EB/OL]. (2018-01-28)[2020-04-17].http://www.doctrine.af.mil/Portals/61/documents/Annex_3-30/3-30-D09-C2-Distributed-vs-Split-Ops.pdf. |
[40] | 张文宇. 分布式作战与其中的航空装备[EB/OL]. (2018-09-20)[2020-04-17]. http://www.cannews.com.cn/2018/0907/181844.shtml. ZHANG W Y. Distributed operations and aviation equipment[EB/OL]. (2018-09-20)[2020-04-17].http://www.cannews.com.cn/2018/0907/181844.shtml. (in Chinese) |
[41] | SMITH N. Munitions directorate overview to industry:10-AFRL_RW_BFI-PACA-2015[R]. Wright-Patterson AFB OH:Air Force Research Laboratory, 2015. |
[42] | GPO. National defense authorization act for fiscal year 2016:PUBLIC LAW 114-92-NOV. 25[S]. Washington, D.C.:GPO, 2015:882-885. |
[43] | INSINNA V. The US Air Force's radical plan for a future fighter could field a jet in 5 years[EB/OL]. (2019-09-16)[2020-04-17]. https://www.defensenews.com/digital-show-dailies/2019/09/16/the-us-air-forces-radical-plan-for-a-future-fighter-could-field-a-jet-in-5-years/. |
[44] | LORD E M. Operation of the middle tier of acquisition (Mta):DOD instruction 5000.80[S]. Washington, D.C.:Office of the Under Secretary of Defense for Acquisition and Sustainment, 2019:3-4. |
[45] | MITRE Acquisition Disrupter (MAD) Team. Middle Tier of Acquisition (MTA)[EB/OL]. (2019-07-23)[2020-03-26].https://aida.mitre.org/wp-content/uploads/2019/07/Middle-Tier-oF-Acquisition-23-Jul-19.pdf. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[3] | Jinyi MA, Can WANG, Tao XUE, Jianliang AI, Yiqun DONG. Development and illustrative applications of an air combat engagement database [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727538-727538. |
[4] | Baichuan ZHANG, Wenhao BI, An ZHANG, Zeming MAO, Mi YANG. Transformer-based error compensation method for air combat aircraft trajectory prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327413-327413. |
[5] | Pan ZHOU, Jiangtao HUANG, Sheng ZHANG, Gang LIU, Bowen SHU, Jigang TANG. Intelligent air combat decision making and simulation based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126731-126731. |
[6] | Sheng ZHANG, Pan ZHOU, Yang HE, Jiangtao HUANG, Gang LIU, Jigang TANG, Huaizhi JIA, Xin DU. Air combat maneuver decision-making test based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 128094-128094. |
[7] | FAN Huitao, YAN Jun. Evolution and development trend of air combat system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527397-527397. |
[8] | SUN Cong. Development trend of future fighter: A review of evolution of winning mechanism in air combat [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525826-525826. |
[9] | SUN Zhixiao, YANG Shengqi, PIAO Haiyin, BAI Chengchao, GE Jun. A survey of air combat artificial intelligence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525799-525799. |
[10] | ZHU Xuejun, ZHAO Changjian, LIANG Zhuo, TAN Qingke. Thoughts on technology development of OODA empowered with AI [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524332-524332. |
[11] | ZHOU Kai, WEI Ruixuan, ZHANG Qirui, DING Chao. Learning method for autonomous air combat based on experience transfer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724285-724285. |
[12] | DONG Yiqun, AI Jianliang. Decision making in autonomous air combat: Review and prospects [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724264-724264. |
[13] | CHEN Bin, WANG Jiang, WANG Yang. Intelligent virtual training partner in embedded training system of fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523467-523467. |
[14] | ZHANG Jing, HE You, PENG Yingning, LI Gang. Neural network and artificial potential field based cooperative and adversarial path planning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 322493-322493. |
[15] | ZUO Jialiang, YANG Rennong, ZHANG Ying, LI Zhonglin, WU Meng. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 321168-321168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341