Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (3): 428708-428708.doi: 10.7527/S1000-6893.2023.28708
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Jitao LI1, Guangzhao HAN2, Jun XIONG1, Tian ZHOU2, Lixun CAI2()
Received:
2023-03-16
Revised:
2023-04-06
Accepted:
2023-05-15
Online:
2024-02-15
Published:
2023-05-24
Contact:
Lixun CAI
E-mail:lix_cai@263.net
Supported by:
CLC Number:
Jitao LI, Guangzhao HAN, Jun XIONG, Tian ZHOU, Lixun CAI. Novel small punch testing method and its application to conversion of mechanical properties for aerospace materials[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 428708-428708.
Table 4
Comparisons of basic mechanical properties obtained by new method and uniaxial tensile testing
材料 | 试样 | 强化系数K/MPa | 硬化指数n | 弹性模量 | 塑性延伸强度 | 抗拉强度 | |||
---|---|---|---|---|---|---|---|---|---|
E/GPa | 误差/% | Rp0.2/MPa | 误差/% | Rm/MPa | 误差/% | ||||
2124-T851 | #1 | 665.1 | 0.090 4 | 74.5 | 3.8 | 451.6 | 1.7 | 494.6 | 2.0 |
#2 | 675.8 | 0.092 8 | 77.7 | 8.3 | 439.3 | 1.1 | 515.6 | 6.3 | |
#3 | 691.0 | 0.105 | 76.9 | 7.0 | 435.2 | 2.0 | 502.7 | 3.7 | |
7050-T7451 | #1 | 769.3 | 0.109 | 70.6 | 1.8 | 501.3 | 2.5 | 553.2 | 1.0 |
#2 | 743.4 | 0.086 8 | 73.3 | 2.0 | 492.6 | 0.7 | 557.1 | 1.7 | |
#3 | 754.4 | 0.091 4 | 73.5 | 2.2 | 482.1 | 1.4 | 555.2 | 1.4 | |
30CrMnSi | #1 | 1204 | 0.233 | 186.7 | 8.2 | 331.0 | 0.7 | 661.8 | 1.8 |
#2 | 1244 | 0.247 | 186.2 | 8.4 | 326.8 | 2.0 | 679.0 | 4.5 | |
#3 | 1181 | 0.224 | 198.0 | 2.6 | 322.6 | 3.3 | 683.5 | 5.2 | |
R30CrMnSi | #1 | 1505 | 0.073 4 | 199.6 | 1.0 | 1 049 | 2.1 | 1 155 | 2.3 |
#2 | 1542 | 0.086 7 | 187.3 | 5.2 | 1 002 | 2.5 | 1 138 | 0.7 | |
#3 | 1575 | 0.085 3 | 192.0 | 2.9 | 1 067 | 3.8 | 1 145 | 1.3 | |
A100 | #1 | 1903 | 0.136 | 172.9 | 6.1 | 974.2 | 0.1 | 1 257 | 2.6 |
#2 | 1861 | 0.129 | 178.1 | 3.3 | 985.0 | 1.2 | 1 250 | 2.0 | |
#3 | 1884 | 0.128 | 179.5 | 2.5 | 1 005 | 3.4 | 1 270 | 3.7 |
1 | KLUEH R L. Miniature tensile test specimens for fusion reactor irradiation studies[J]. Nuclear Engineering and Design Fusion, 1985, 2(3): 407-416. |
2 | FLORANDO J N, NIX W D. A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 619-638. |
3 | 董樑, 惠虎, 汤晓英. 基于微试样液压爆破法测试核压力容器用钢力学性能[J]. 原子能科学技术, 2015, 49(12): 2227-2233. |
DONG L, HUI H, TANG X Y. Mechanical property test of domestic A508 steel based on small bursting test[J]. Atomic Energy Science and Technology, 2015, 49(12): 2227-2233 (in Chinese). | |
4 | CHEN H, CAI L X. Unified ring-compression model for determining tensile properties of tubular materials[J]. Materials Today Communications, 2017, 13: 210-220. |
5 | KAZAKEVICIUTE J, ROUSE J P, DE FOCATIIS D S A, et al. The development of a novel technique for small ring specimen tensile testing[J]. Theoretical and Applied Fracture Mechanics, 2019, 99: 131-139. |
6 | MANAHAN M P. A new postirradiation mechanical behavior test—The miniaturized disk bend test[J]. Nuclear Technology, 1983, 63(2): 295-315. |
7 | MAO X Y, TAKAHASHI H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests[J]. Journal of Nuclear Materials, 1987, 150(1): 42-52. |
8 | 关凯书, 王志文, 徐彤, 等. 小冲杆试验方法标准化研究(二): 材料室温拉伸性能的确定[J]. 压力容器, 2010, 27(8): 40-46. |
GUAN K S, WANG Z W, XU T, et al. Study on standardization of small punch test (2)—Tensile properties at room temperature[J]. Pressure Vessel Technology, 2010, 27(8): 40-46 (in Chinese). | |
9 | 韩浩, 王志文, 关凯书. 小冲杆试验技术测定金属材料强度性能[J]. 压力容器, 2004, 21(10): 14-17. |
HAN H, WANG Z W, GUAN K S. Toughness measurement of metal material by small punch test technology[J]. Pressure Vessel Technology, 2004, 21(10): 14-17 (in Chinese). | |
10 | CONTRERAS M A, RODRÍGUEZ C, BELZUNCE F J, et al. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(9): 727-737. |
11 | GARCÍA T E, RODRÍGUEZ C, BELZUNCE F J, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test[J]. Journal of Alloys and Compounds, 2014, 582: 708-717. |
12 | BRUCHHAUSEN M, HOLMSTRÖM S, SIMONOVS⁃ KI I, et al. Recent developments in small punch testing: Tensile properties and DBTT[J]. Theoretical and Applied Fracture Mechanics, 2016, 86: 2-10. |
13 | 张渊博, 关凯书, 王琼琦. 小冲杆试验摩擦力计算及抗拉强度公式改进[J]. 热加工工艺, 2019, 48(12): 54-57. |
ZHANG Y B, GUAN K S, WANG Q Q. Calculation of frictional force and improvement of tensile strength formula for small punch test[J]. Hot Working Technology, 2019, 48(12): 54-57 (in Chinese). | |
14 | 张赛飞, 雷龙宇, 杜明科, 等. 基于小冲杆试验的CB2耐热钢拉伸性能研究[J]. 热加工工艺, 2021, 50(24): 28-31. |
ZHANG S F, LEI L Y, DU M K, et al. Research on tensile properties of CB2 heat-resistant steel based on small punch test[J]. Hot Working Technology, 2021, 50(24): 28-31 (in Chinese). | |
15 | HUSAIN A, SEHGAL D K, PANDEY R K. An inverse finite element procedure for the determination of constitutive tensile behavior of materials using miniature specimen[J]. Computational Materials Science, 2004, 31(1-2): 84-92. |
16 | CHEON J S, JOO C H. Small punch test for determining a flow stress by using a hybrid inverse procedure[J]. Computational Materials Science, 2008, 43(4): 744-751. |
17 | ZHONG J R, XU T, WANG W L, et al. Use of database and small punch test to estimate true stress-plastic strain curve of steels[J]. International Journal of Pressure Vessels and Piping, 2021, 191: 104370. |
18 | RODRIGUEZ C, CABEZAS J G, CARDENAS E, et al. Mechanical properties characterization of heat-affected zone using the small punch test[J]. Welding Journal, 2009, 88(9): 188-192. |
19 | FLEURY E, HA J S. Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength[J]. International Journal of Pressure Vessels and Piping, 1998, 75(9): 699-706. |
20 | SHIKALGAR T D, DUTTA B K, CHATTOPADHYAY J. Assessment of fracture resistance data using p-SPT specimens[J]. Theoretical and Applied Fracture Mechanics, 2018, 98: 167-177. |
21 | 乔建生, 钟巍华, 杨文. 基于小冲杆实验方法的国产A508-3钢辐照前后的断裂韧度测定[J]. 原子能科学技术, 2013, 47(7): 1217-1221. |
QIAO J S, ZHONG W H, YANG W. Fracture toughness measurement of domestic A508-3 steel using small punch test[J]. Atomic Energy Science and Technology, 2013, 47(7): 1217-1221 (in Chinese). | |
22 | 杨镇, 王志文. 小冲杆蠕变试验微试样的应变分析[J]. 化工机械, 2004, 31(2): 82-86. |
YANG Z, WANG Z W. Strain analysis of the miniature specimen in a small punch creep test[J]. Chemical Engineering & Machinery, 2004, 31(2): 82-86 (in Chinese). | |
23 | IZAKI T, KOBAYASHI T, KUSUMOTO J, et al. A creep life assessment method for boiler pipes using small punch creep test[J]. International Journal of Pressure Vessels and Piping, 2009, 86(9): 637-642. |
24 | CHEN H, CAI L X. Unified elastoplastic model based on a strain energy equivalence principle[J]. Applied Mathematical Modelling, 2017, 52: 664-671. |
25 | CHEN H, CAI L X. An elastoplastic energy model for predicting the deformation behaviors of various structural components[J]. Applied Mathematical Modelling, 2019, 68: 405-421. |
26 | 张志杰, 蔡力勋, 陈辉, 等. 金属材料的强度与应力-应变关系的球压入测试方法[J]. 力学学报, 2019, 51(1): 159-169. |
ZHANG Z J, CAI L X, CHEN H, et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 159-169 (in Chinese). | |
27 | BYUN T S, HONG J H, HAGGAG F M, et al. Measurement of through-the-thickness variations of mechanical properties in SA508 Gr.3 pressure vessel steels using ball indentation test technique[J]. International Journal of Pressure Vessels and Piping, 1997, 74(3): 231-238. |
28 | 国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: [S]. 北京: 中国标准出版社, 2021. |
Standardization Administration of the People’s Republic of China. Metallic materials—Tensile testing—Part 1: Method of test at room temperature: [S]. Beijing: Standards Press of China, 2021 (in Chinese). |
[1] | Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293. |
[2] | Ping CHEN, Xia YE, Huaqiang LIU, Yiliang HU, Xin YU. Axial stress measurement of bolts based on ultrasonic energy attenuation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 227250-227250. |
[3] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[4] | Zhiqiang ZHANG, Qingze GOU, Xuecheng LU, Hao WANG, Yiran CAO, Zhiyong GUO. Droplet transfer behavior of high strength aluminum alloy CMT+P arc additive manufacturing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 427881-427881. |
[5] | Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554. |
[6] | WANG Binwen, NIE Xiaohua, WAN Chunhua, WU Cunli. Research and application of virtual test technology for static strength of full scale aircraft structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526273-526273. |
[7] | SUN Cong. Development status, challenges and trends of strength technology for hypersonic vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 527590-527590. |
[8] | WAN Aoshuang. Probabilistic assessment on damage tolerance of composite helicopter horizontal tail structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525557-525557. |
[9] | WANG Houbing, WANG Xiahan, LIN Guowei, LI Xinxiang, YANG Shengchun. Residual strength evaluation of curved hat-stiffened composite panels with discrete-source damage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525899-525899. |
[10] | LIU Zhendong, ZHENG Xitao, FAN Wenjing, ZHANG Dongjian. Effect of process-induced residual stress on strength of UAV composite wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526117-526117. |
[11] | LIU Xin, YANG Jingchao, LI Heng, ZHANG Yanhong, YANG Zhiwei, GU Jingfei, LI Guangjun, HUANG Dan. Critical review on tube joining by plastic deformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525258-525258. |
[12] | YANG Siyuan, WANG Ying, WANG Jilai, YANG Zhenwen, WANG Dongpo. Interfacial microstructure and mechanical properties of vacuum-brazed Al2O3 ceramic and GH3536 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525806-525806. |
[13] | CAI Xiaoqiang, WANG Dongpo, WANG Ying, YANG Zhenwen. Interfacial microstructure and mechanical properties of TiB2-TiC-SiC ceramics joints fabricated by contact reactive brazing technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625006-625006. |
[14] | ZOU Qi, YE Yiyun, JIAO Junke, WU Zhisheng, XU Zifa, ZHANG Wenwu. Performance analysis of carbon fiber reinforced thermalsetting composite-titanium alloy laser joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625037-625037. |
[15] | ZHOU Bin, GUO Yan, LI Ning, ZHONG Xijian. Path planning of UAV using guided enhancement Q-learning algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 325109-325109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341