1 |
赵明杰, 邓磊, 孙朝远, 等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展[J]. 科学通报, 2022, 67(11): 1036-1053.
|
|
ZHAO M J, DENG L, SUN C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process[J]. Chinese Science Bulletin, 2022, 67(11): 1036-1053 (in Chinese).
|
2 |
赵明杰, 黄亮, 李昌民, 等. 300M钢的热变形行为及热锻成形工艺研究现状[J]. 精密成形工程, 2020, 12(6): 16-27.
|
|
ZHAO M J, HUANG L, LI C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27 (in Chinese).
|
3 |
赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37(6): 1-6.
|
|
ZHAO B, XU G X, HE F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. Journal of Aeronautical Materials, 2017, 37(6): 1-6 (in Chinese).
|
4 |
HE D G, LIN Y C, CHEN J, et al. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates[J]. Materials & Design, 2018, 154: 51-62.
|
5 |
WANG X X, GAO P F, ZHAN M, et al. Development of microstructural inhomogeneity in multi-pass flow forming of TA15 alloy cylindrical parts[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2088-2097.
|
6 |
ZHANG X, LI H W, ZHAN M, et al. Role of the inter-pass cooling rate in recrystallization behaviors of Ni-based superalloy during interrupted hot compression[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1314-1330.
|
7 |
MA Q, WEI K, XU Y, et al. Exploration of the static softening behavior and dislocation density evolution of TA15 titanium alloy during double-pass hot compression deformation[J]. Journal of Materials Research and Technology, 2022, 18: 872-881.
|
8 |
DING S, KHAN S, YANAGIMOTO J. Metadynamic recrystallization behavior of 5083 aluminum alloy under double-pass compression and stress relaxation tests[J]. Materials Science and Engineering: A, 2021, 822: 141673.
|
9 |
TANG J, JIANG F L, LUO C H, et al. Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al-Zn-Mg-Cu alloys[J]. International Journal of Plasticity, 2020, 134: 102809.
|
10 |
NIE X, DONG S, WANG F H, et al. Flow behavior and formability of hot-rolled Mg-8Gd-3Y alloy under double-pass isothermal compression[J]. Journal of Materials Processing Technology, 2020, 275: 116328.
|
11 |
XIONG Y B, WEN D X, LI J J, et al. High-temperature deformation characteristics and constitutive model of an ultrahigh strength steel[J]. Metals and Materials International, 2021, 27(10): 3945-3958.
|
12 |
WEN D X, YUE T Y, XIONG Y B, et al. High-temperature tensile characteristics and constitutive models of ultrahigh strength steel[J]. Materials Science and Engineering: A, 2021, 803: 140491.
|
13 |
CHEN R C, GUO P, ZHENG Z Z, et al. Dislocation based flow stress model of 300M steel in isothermal compression process[J]. Materials, 2018, 11(6): 972.
|
14 |
赵明杰, 黄亮, 李建军, 等. 300M钢热扭转变形条件下的变形行为研究[J]. 塑性工程学报, 2020, 27(11): 159-166.
|
|
ZHAO M J, HUANG L, LI J J, et al. Deformation behaviors of 300M steel under hot torsion[J]. Journal of Plasticity Engineering, 2020, 27(11): 159-166 (in Chinese).
|
15 |
GUO P, DENG L, WANG X Y, et al. Modelling of dynamic recrystallization kinetics of 300M steel at high strain rates during hot deformation[J]. Science China Technological Sciences, 2019, 62(9): 1534-1544.
|
16 |
CHEN R C, XIAO H F, WANG M, et al. Hot workability of 300M steel investigated by in situ and ex situ compression tests[J]. Metals, 2019, 9(8): 880.
|
17 |
ZHAO M J, HUANG L, LI C M, et al. Flow stress characteristics and constitutive modeling of typical ultrahigh-strength steel under high temperature and large strain[J]. Steel Research International, 2023, 94(3): 2200648.
|
18 |
ZENG R, HUANG L, SU H L, et al. Softening characterization of 300M high-strength steel during post-dynamic recrystallization[J]. Metals, 2018, 8(5): 340.
|
19 |
ZHAO M J, HUANG L, ZENG R, et al. In-situ observations and modeling of metadynamic recrystallization in 300M steel[J]. Materials Characterization, 2020, 159: 109997.
|
20 |
ZHAO M J, HUANG L, LI C M, et al. Investigation and modeling of austenite grain evolution for a typical high-strength low-alloy steel during soaking and deformation process[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010.
|
21 |
李建军, 赵明杰, 曾嵘, 等. 一种高强钢后动态再结晶过程的分析方法: ZL 201811161346.4 [P]. 2018-09-30.
|
|
LI J J, ZHAO M J, ZENG R, et al. A method for analyzing postdynamic recrystallization process of high strength steel: China ZL 201811161346.4[P]. 2018-09-30 (in Chinese).
|
22 |
LI C M, HUANG L, ZHAO M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: rules and modeling[J]. Materials Science and Engineering: A, 2020, 797: 139925.
|
23 |
ZHAO M J, HUANG L, LI C M, et al. Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel[J]. Materials Science and Engineering: A, 2021, 810: 141031.
|
24 |
XU G H, TAO J Y, DENG Y J, et al. Multi-stage hot deformation and dynamic recrystallization behavior of low-cost Ti-Al-V-Fe alloy via electron beam cold hearth melting[J]. Journal of Materials Research and Technology, 2022, 20: 1186-1203.
|
25 |
QIAO S B, HE X K, XIE C S, et al. Static recrystallization behavior of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation[J]. Journal of Iron and Steel Research International, 2021, 28(5): 604-612.
|
26 |
SAKAI T K, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60: 130-207.
|
27 |
WANG Y T, LI J B, XIN Y C, et al. Effect of Zener-Hollomon parameter on hot deformation behavior of CoCrFeMnNiC0.5 high entropy alloy[J]. Materials Science and Engineering: A, 2019, 768: 138483.
|
28 |
WEN D X, LIN Y C, CHEN J, et al. Work-hardening behaviors of typical solution-treated and aged Ni-based superalloys during hot deformation[J]. Journal of Alloys and Compounds, 2015, 618: 372-379.
|
29 |
TANG X F, WANG B Y, JI H C, et al. Behavior and modeling of microstructure evolution during metadynamic recrystallization of a Ni-based superalloy[J]. Materials Science and Engineering: A, 2016, 675: 192-203.
|
30 |
YOGO Y, TANAKA K, NAKANISHI K. In-situ observation of grain growth of steel at high temperature[J]. MATERIALS TRANSACTIONS, 2009, 50(2): 280-285.
|
31 |
骆俊廷, 赵静启, 杨哲懿, 等. 基于Deform软件二次开发和BP神经网络的TA15多向锻造微观组织预报[J]. 航空学报, 2021, 42(12): 424693.
|
|
LUO J T, ZHAO J Q, YANG Z Y, et al. Microstructure prediction of multi-directional forging of TA15 alloy based on secondary development of Deform and BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 424693 (in Chinese).
|
32 |
MENG Y, LIN J Y, YANAGIDA A, et al. Modeling static and dynamic kinetics of microstructural evolution in hot deformation of Fe-0.15C-0.2Si-1.4Mn-0.03Nb alloy[J]. Steel Research International, 2017, 88(11): 1700036.
|
33 |
JIN Z Y, YIN K, YAN K, et al. Finite element modelling on microstructure evolution during multi-pass hot compression for AZ31 alloys using incremental method[J]. Journal of Materials Science & Technology, 2017, 33(11): 1255-1262.
|
34 |
WANG J, CHEN G, HUANG S H, et al. Multi-scale modeling and simulation for multi-pass processing of Ta-2.5 W alloy[J]. International Journal of Mechanical Sciences, 2022, 218: 107069.
|
35 |
HUANG C Q, JIA X D, ZHANG Z W. Modeling and simulation of the static recrystallization of 5754 aluminium alloy by cellular automaton[J]. Metals, 2018, 8(8): 585.
|
36 |
HUANG W H, LEI L P, FANG G. Microstructure evolution of hot work tool steel 5CrNiMoV throughout heating, deformation and quenching[J]. Materials Characterization, 2020, 163: 110307.
|