Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (11): 529065.doi: 10.7527/S1000-6893.2023.29065
• Reviews • Previous Articles Next Articles
Penggang MU(
), Binchao LI, Jun WANG, Shaowei SONG, Hanyang SHI
Received:2023-05-29
Revised:2023-07-25
Accepted:2023-09-05
Online:2024-06-15
Published:2023-10-08
Contact:
Penggang MU
E-mail:mu_penggang@163.com
Supported by:CLC Number:
Penggang MU, Binchao LI, Jun WANG, Shaowei SONG, Hanyang SHI. Research progress on structural strength of liquid rocket engine during engineering development phase[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529065.
Table 1
Safety factor of some components
| 零组件 | 安全系数要求 | 来源 | |
|---|---|---|---|
| 带压结构 | 极限强度安全系数:1.5;爆破压力安全系数:2.5 | GJB 2200A—2004[ | |
| 带压结构 | 液压试验压力为1.2~1.5倍最大工作压力; 爆破试验压力不低于2.5倍最大工作压力 | GJB 10A—2004[ | |
| 轴类 | 刚轴 | 要求工作转数不大于0.85倍一阶临界转速 | |
| 柔轴 | 当工作转数在一、二阶临界转数之间时,要求工作转数大于1.15倍的一阶临界转速,且小于0.85倍的二阶临界转速; 当工作转数在二、三阶临界转数之间时,要求工作转数大于1.15倍的二阶临界转速,且小于0.85倍的三阶临界转速 | ||
| 推力室 | 极限强度安全系数:1.5; 极限耐压压力不低于最大工作压强2倍 | QJ 2486A—2014[ | |
| 推力室 | 身部连接强度试验的试验压力为1.5~2.0倍最大工作压力; 总体承载能力试验的试验压力为1.2倍最大工作压力; 爆破试验压力为一般不低于2.5倍最大工作压力 | QJ 2786—1996[ | |
| 贮箱 | 按屈服强度设计安全系数取1.0~1.1; 按极限强度设计安全系数取1.25~2; 液压试验系数一般取1.05~1.5 | QJ 1941—1990[ | |
| 钛合金球形气瓶 | 按极限强度设计安全系数取1.5~2 | QJ 1654—1989[ | |
Table 2
Minimum safety analysis and strength test factors[25-26]
| 发动机硬件类型 | 载荷 | 失效模式 | 安全性分析系数 | 试验系数 | |
|---|---|---|---|---|---|
| 鉴定 | 验收/验证 | ||||
| 金属结构及部件 | |||||
| 屈服 | 仅机械载荷 | 净截面屈服 | 1.10 | NA | NA |
| 极限 | 仅机械载荷 | 净截面极限 | 1.40 | 1.40 | NA |
| 极限 | 最大设计条件 | 稳定性极限 | 1.40 | 1.40 | 1.20 |
| 极限压力及转速 | 最大设计压力或转速 | 净截面屈服 | 1.50 | 1.50 | 1.20 |
| 极限 | 最大设计条件 | 点应变极限 | 2.00 | 1.40 | 1.20 |
| 压力容器及带压部件 | 最大设计条件(仅压力) | AFSPCMAN 91-710和AIAA S-080-1998或AIAA S-081-2000 | |||
| 紧固件及预加载连接 | |||||
| 屈服 | 最大设计条件 | 净截面屈服 | 1.10 | NA | NA |
| 极限 | 最大设计条件 | 净截面极限 | 1.40 | 1.40 | 1.20 |
| 连接分离 | 最大设计条件 | 分离泄漏 | 1.20 | 1.20 | 1.20 |
| 安全关键 | 最大设计条件 | 分离泄漏 | 1.40 | 1.40 | 1.20 |
| 复合材料及/或胶接结构及部件-极限强度 | (除非说明,失效模式一为极限点应力/应变) | ||||
| 均匀区 | 最大设计条件 | 点极限 | 1.40 | 1.40 | 1.20 |
| 应力集中区 | 最大设计条件 | 点极限 | 2.00 | 1.40 | 1.20 |
| 胶接接头 | 最大设计条件 | 净截面极限 | 2.00 | 1.40 | 1.20 |
| 烧蚀 | 最大设计条件 | 点极限 | 1.70 | 1.40 | 1.20 |
| 1 | 黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49: 024503. |
| HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49: 024503 (in Chinese). | |
| 2 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864 |
| LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
| 3 | GOETZ O K, MONK J C. Combustion device failures during space shuttle main engine development[C]∥ 5th International Symposium on Liquid Space Propulsion Long Life Combustion Devices Technology. 2003. |
| 4 | JUE F H, KUCK F. Space shuttle main engine (SSME) options for the future shuttle[C]∥ 38th AIAA/ASME/-SAE/ASEE Joint Propulsion Conference & Exhibit. 2002. |
| 5 | WORLUND A L, HASTINGS J H. Space shuttle main engine evolutions[C]∥ 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2001. |
| 6 | JUE F H. Space shuttle main engine-thirty years of innovation: NASA-46693 [R]. 2002. |
| 7 | RYAN R S. A history of aerospace problems, their solution, their lessons: NASA-TP-3653[R]. 1996. |
| 8 | LANGHLIN R B. Space shuttle main engine orientation[R]. Space Transportation System Training Data, Rocketdyne Propulsion & Power, 1998. |
| 9 | LI B. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34. |
| 10 | 段增斌. 中国大型液体火箭发动机研制[J]. 火箭推进, 2000(1): 13-28. |
| DUAN Z B. Development of China's large liquid rocket engine[J]. Journal of Rocket Propulsion, 2000(1): 13-28 (in Chinese). | |
| 11 | 杨尔辅, 张振鹏, 崔定军. 液发推力室和涡轮泵故障监测与诊断技术研究[J]. 北京航空航天大学学报, 1999, 25(5): 619-622. |
| YANG E F, ZHANG Z P, CUI D J. Study on fault monitoring and diagnosis techniques for thrust chamber and turbo-pump systems of liquid rocket engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 619-622 (in Chinese). | |
| 12 | 殷谦, 张金容. 液体火箭发动机故障模式及分析[J].推进技术, 1997, 18(1): 22-25. |
| YIN Q, ZHANG J R. Failure mode and analysis for liquid propellant rocket engines[J]. Journal of Propulsion Technology, 1997, 18(1): 22-25 (in Chinese). | |
| 13 | 吴建军, 张育林, 陈启智. 大型泵压式液体火箭发动机故障综合分析[J]. 导弹与航天运载技术, 1996(1): 10-15. |
| WU J J, ZHANG Y L, CHEN Q Z. Fault analysis for large liquid rocket engine with turbopump system[J]. Missiles and Space Vehicles, 1996(1): 10-15 (in Chinese). | |
| 14 | 杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018(3): 16-22. |
| DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018(3): 16-22 (in Chinese). | |
| 15 | GORACKE B D, LEVACK D J, NIXON R F. The F-1A and the SSME: a route to the future[C]∥ AIAA Space Programs and Technologies Conference and Exhibit. 1993. |
| 16 | SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007. |
| 17 | YANG V, ANDERSON W. Liquid rocket engine combustion instability[M]. Washington, D.C.:AIAA, 1995. |
| 18 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine fluid-cooled combustion chambers : NASA SP-8087[S]. Cleveland, OH: NASA Lewis Research Center, 1972. |
| 19 | NASA. Space vehicle design criteria (Chemical propulsion). Turbopump systems for liquid rocket engines : NASA SP-8107[S]. Cleveland, OH: NASA Lewis Research Center, 1974. |
| 20 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine turbines : NASA SP-8110[S]. Cleveland, OH: NASA Lewis Research Center, 1974. |
| 21 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine nozzles : NASA SP-8120[S]. Cleveland, OH: NASA Lewis Research Center, 1976. |
| 22 | NASA. Space vehicle design criteria (Structures). Design development testing : NASA SP-8043[S]. Hampton, VA: NASA Langley Research Center, 1970. |
| 23 | NASA. Space vehicle design criteria (Structures). Qualification testing : NASA SP-8044[S]. Hampton, VA: NASA Langley Research Center, 1970. |
| 24 | NASA. Space vehicle design criteria (Structures). Acceptance testing : NASA SP-8045[S]. Hampton, VA: NASA Langley Research Center, 1970. |
| 25 | NASA. Strength and life assessment requirements for liquid-fueled space propulsion system engines : NASA-STD-5012[S]. Washington, DC: NASA, 2006. |
| 26 | Air Force Space and Missile Systems Center Standard. Evaluation and test requirements for liquid rocket engines: SMC-S-025 [S]. EL Segundo, CA: Air Force Space Command, 2017. |
| 27 | 国防科学技术工业委员会. 液体火箭发动机通用规范: [S]. 北京: 国防科工委军标出版发行部, 2004. |
| Commission of Science, Technology and Industry for National Defense. General specification for liquid propellant rocket engine: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2004 (in Chinese). | |
| 28 | 国防科学技术工业委员会. 可贮存推进剂液体火箭发动机试验项目和要求: [S]. 北京: 国防科工委军标出版发行部, 2004. |
| Commission of Science, Technology and Industry for National Defense. Test item and requirement for storable liquid propellant rocket engine: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2004 (in Chinese). | |
| 29 | 国家国防科技工业局. 液体火箭发动机推力室通用规范: [S]. 北京: 中国航天标准化研究所, 2015. |
| State Administration of Science, Technology and Industry for National Defense. General specification for liquid rocket engine thrust chambers: [S]. Beijing: China Aerospace Standardization Research Institute, 2015 (in Chinese). | |
| 30 | 中国航天工业总公司. 液体火箭发动机管路系统通用要求: [S]. 北京: 中国航天标准化研究所, 1998. |
| China Aerospace Industry Corporation. General requirements for liquid rocket engine piping system: [S]. Beijing: China Aerospace Standardization Research Institute, 1998 (in Chinese). | |
| 31 | 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 027099. |
| ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 027099 (in Chinese). | |
| 32 | HIMELBLAU H, KERN D L, MANNING J E, et al. Dynamic environmental criteria : NASA-HDBK-7005[S]. Washington, D.C.: NASA, 2001. |
| 33 | 休泽尔 D K. 液体火箭发动机现代工程设计[M]. 朱宁昌, 等,译. 北京: 中国宇航出版社, 2004. |
| HUZEL D K. Modern engineering for design of liquid rocket engine[M]. ZHU N C, et al. translated. Beijing: China Aerospace Publishing House, 2004 (in Chinese). | |
| 34 | 国防科学技术工业委员会. 运载器、上面级和航天器试验要求: [S]. 北京: 国防科工委军标出版发行部, 2006. |
| Commission of Science, Technology and Industry for National Defense. Test requirements for launch, upper-stage and space vehicles: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2006 (in Chinese). | |
| 35 | 雅各布·约布·维科尔. 航天器结构[M]. 董瑶海, 周徐斌, 满孝颖, 等,译. 北京: 国防工业出版社, 2017. |
| WIJKER J. Spacecraft structures[M]. DONG Y H, ZHOU X B, MAN X Y, et al. translated. Beijing: National Defense Industry Press, 2017 (in Chinese). | |
| 36 | European Cooperation for Space Standardization. Space engineering-Mechanical-Part 2: Structural: ECSS-E-30 Part 2A [S]. Noordwijk: ESA Requirements and Standard Division, 2000. |
| 37 | BARRETT R E. Techniques for predicting localized vibratory environments of rocket vehicles: NASA Technical Note D-1836 [R]. 1963. |
| 38 | ZIPAY J J, MODLIN C T, LARSEN C E. The ultimate factor of safety for aircraft and spacecraft—its history, applications and misconceptions[C]∥ 57th AIAA/-ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2016. |
| 39 | International Organization for Standardization. Space systems—Structural design-Determination of loading levels for static qualification testing of launch vehicles: [S]. 2000. |
| 40 | 中国航天工业总公司. 液体火箭发动机推力室设计规范: [S]. 北京: 中国航天标准化研究所, 1996. |
| China Aerospace Industry Corporation. Design specification for liquid rocket engine thrust chamber: [S]. Beijing: China Aerospace Standardization Research Institute, 1996 (in Chinese). | |
| 41 | 航空航天工业部. 推进剂贮箱设计准则: [S]. 北京: 中国航天标准化研究所, 1990. |
| Ministry of Aviation and Aerospace Industry. Design criteria for propellant storage tank: [S]. Beijing: China Aerospace Standardization Research Institute, 1990 (in Chinese). | |
| 42 | 航天工业部. 钛合金球形气瓶设计准则: [S]. 北京: 中国航天标准化研究所, 1989. |
| Ministry of Aerospace Industry. Design criteria for titanium alloy spherical cylinder: [S]. Beijing: China Aerospace Standardization Research Institute, 1989 (in Chinese). | |
| 43 | NASA. Structural design and test factors of safety for spaceflight hardware : NASA-STD-5001B[S]. Washington, D.C.: NASA, 2014. |
| 44 | NASA. Load analyses of spacecraft and payloads : NASA-STD-5002[S]. Washington, D.C.: NASA, 1996. |
| 45 | United States Department of Defense. Metallic materials and elements for aerospace vehicle structures: MIL-H [S]. Washington, D.C.: Department of Defense, 2003. |
| 46 | Battelle Institute. Metallic materials properties development and standardization handbook: MMPDS-11 [S]. Federal Aviation Administration, 2016. |
| 47 | NASA. Fracture control requirements for spaceflight hardware : NASA-STD-5019[S]. Washington, D.C.: NASA, 2008. |
| 48 | 国防科学技术工业委员会. 液体火箭发动机地面试验测量系统规范: [S]. 北京:国防科工委军标出版发行部, 1993. |
| Commission of Science, Technology and Industry for National Defense. Specification for testing on ground of liquid propellant rocket engine—Measurement systems: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1993 (in Chinese). | |
| 49 | 国防科学技术工业委员会. 液体火箭发动机地面试验测量方法: [S]. 北京: 国防科工委军标出版发行部, 1997. |
| Commission of Science, Technology and Industry for National Defense. Liquid propellant rocket engine—Measurement method for testing on ground: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1997 (in Chinese). | |
| 50 | 中国航天工业总公司. 液体火箭发动机应变测量方法: [S]. 北京: 中国航天标准化研究所, 1997. |
| China Aerospace Industry Corporation. Strain measurement method for liquid rocket engine: [S]. Beijing: China Aerospace Standardization Research Institute, 1997 (in Chinese). | |
| 51 | 国家国防科技工业局. 液体火箭发动机试验动态压力测量方法: [S]. 北京: 中国航天标准化研究所, 2013. |
| State Administration of Science, Technology and Industry for National Defense. Measuring method for dynamic pressure of liquid rocket engine test: [S]. Beijing: China Aerospace Standardization Research Institute, 2013 (in Chinese). | |
| 52 | 马双民. 液体火箭发动机质量管理与检测技术[M]. 北京: 中国宇航出版社, 2017. |
| MA S M. Quality management and testing technology of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2017 (in Chinese). | |
| 53 | 魏超, 马双民. 液体火箭发动机焊接技术[M]. 北京: 中国宇航出版社, 2016. |
| WEI C, MA S M. Welding technology of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2016 (in Chinese). | |
| 54 | 谭永华, 许艺峰, 张权明, 等. 液体动力制造过程检测技术应用与挑战[J]. 中国航天, 2018(10): 7-13. |
| TAN Y H, XU Y F, ZHANG Q M, et al. Applications and challenges of manufacturing process measurement technology in the field of liquid rocket power[J]. Aerospace China, 2018(10): 7-13 (in Chinese). | |
| 55 | 单黎波. 波纹板夹层结构高温钎焊焊缝X射线影像分析[J]. 火箭推进, 2006(2): 37-40. |
| SHAN L B. X ray image analysis of high temperature brazing seam for corrugated plate sandwich structure[J]. Journal of Rocket Propulsion, 2006(2): 37-40 (in Chinese). | |
| 56 | 刘国增. 钛合金导管的涡流检测[J]. 火箭推进, 2011(3): 48-51. |
| LIU G Z. Eddy current testing of Ti alloy ducts [J]. Journal of Rocket Propulsion, 2011(3): 48-51 (in Chinese). | |
| 57 | BETTS E M, EDDLEMAN D E, REYNOLDS D C, et al. Using innovative technologies for manufacturing rocket engine hardware[C]∥ JANNAF 6th Liquid Propulsion Conference. 2011. |
| 58 | 刘贞, 任文坚, 彭东剑, 等. 射线计算机成像技术在发动机变壁厚产品检测中的试验研究[J]. 宇航材料工艺, 2021(6): 85-88. |
| LIU Z, REN W J, PENG D J, et al. CR technology in detection of engine variable wall thickness products[J]. Aerospace Materials & Technology, 2021(6): 85-88 (in Chinese). | |
| 59 | NASA. Fracture control requirements for payloads using the space shuttle : NASA-STD-5003[S]. Washington, D.C.: NASA, 1996. |
| 60 | NASA. Nondestructive evaluation requirements for fracture critical metallic components : NASA-STD-5009[S]. Washington, D.C.: NASA, 2008. |
| 61 | Air Force Space and Missile Systems Center Standard. Test requirements for launch, upper-stage and space vehicles: SMC-S-016 [S]. EL Segundo CA: Air Force Space Command, 2014. |
| 62 | MSFC. Fastrac 60K structural assessment plan: MSFC-PLAN-2676[R]. Huntsville AL: MSFC, 1996. |
| 63 | MSFC. Space transportation main engine structural strength and life program requirements: M [S]. Huntsville AL: MSFC, 1992. |
| 64 | 中国人民解放军总装备部. 军用装备实验室环境试验方法: ~150.28A—2009[S]. 北京.总装备部军标出版发行部, 2009. |
| General Armament Department of the Chinese People's Liberation Army. Laboratory environmental test methods for military material: ~150.28A—2009[S]. Beijing: Military Standards Publication and Distribution Department of General Armament Department, 2009 (in Chinese). | |
| 65 | 国防科学技术工业委员会. 导弹武器系统压力容器缺陷安全评定方法: [S]. 北京: 国防科工委军标出版发行部, 1997. |
| Commission of Science, Technology and Industry for National Defense. Safety evaluation methods of the defects for pressure vessel of missile system: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1997 (in Chinese). | |
| 66 | 贺小帆, 朱俊贤. 军用飞机结构耐久性严重谱编制与应用研究进展[J]. 航空学报, 2022, 43(12): 025070. |
| HE X F, ZHU J X. Advances in durability severe spectrum: Development and application for military aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025070 (in Chinese). | |
| 67 | 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 524651. |
| WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese). |
| [1] | Huidong MA, Zhe LIAN, Xinyuan YANG, Dewang LI, Xuezong BAI, Zongwen AN. Residual strength prediction for fiber-reinforced composites under variable frequency loading [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 231068-231068. |
| [2] | Zhichun YANG, Te YANG. Physical embedded neural network model and method for dynamic load identification [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531450-531450. |
| [3] | Lixin WANG, Yilong NIU, Hailiang LIU, Jin WANG, Xianlong WANG, Ting YUE. Aircraft digital virtual flight simulation method and its application [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531543-531543. |
| [4] | Zhiqiang WAN, Shanshan ZHANG, Xiaozhe WANG, Liang MA, Ao XU, Zhigang WU, Chao YANG. Maneuver load analysis and alleviation technology of flexible aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30279-030279. |
| [5] | Wubin KONG, Di LIU, Xinggang FAN, Xuejun PEI, Shengqiao HAO, Ying CUI, Qianrong MA, Dawei LI, Haiyang FANG, Jue YU, Yi CHENG, Wenjuan CHEN, Feiteng LUO. Source-grid-load architecture and key technologies of aero-engine multi-electrical control system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 30689-030689. |
| [6] | Yingjie SHI, Binchao LIU, Songsong LU, Liang CHEN, Hai SHANG, Rui BAO. Neural network model for wing strain-load relationship based on fusion of real and virtual data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530921-530921. |
| [7] | Liang CHEN, Lei HUANG, Yuxuan GU, Cong GUO, Kexin LIN, Yu GUAN, Jian SONG. Twinning technology of key part load based on flight parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531292-531292. |
| [8] | Pengfei WANG, Lifang ZENG, Xueming SHAO, Jun LI. Multi-source data fusion modeling method for aerodynamic load of aircraft wing based on pre-training and fine-tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532297-532297. |
| [9] | Yifei WANG, Geyong CAO, Yang CAO, Xiaojun WANG. Uncertainty technologies in aircraft digital strength twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532408-532408. |
| [10] | Liang CHEN, Fanxing MENG, Chengbo WANG, Yinxuan ZHANG, Linshu MENG. Development and application of digital twins technology in aircraft strength design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532252-532252. |
| [11] | Lixin YANG, Yanbin LI, Qingguo FEI. Research progress and prospect of electromagnetic functional structure of aerospace vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331808-331808. |
| [12] | Ruiyu LI, Ming CAI, Bo OUYANG, Limin GAO, Bo LIU, Baojie LIU. Standard cascade test for typical high-load and large turning angle compressor arfoils [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(16): 131651-131651. |
| [13] | Xin WANG, Xiayang ZHANG, Qijun ZHAO, Jinwu XIANG. Aeroelastic loads of rotor during collective pitch ramp increase in hovering state based on VVPM/GEBT coupling method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(16): 231628-231628. |
| [14] | Shuming YANG, Jianjun WU, Changlin XIE, Yuqiang CHENG, Biao WANG. Application issues of data-driven intelligent fault diagnosis technologies for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 131427-131427. |
| [15] | Yujia FENG, Zhenhua SUN, Kun WANG, Jiaqi GUO. Advances in boron-loaded gel ramjet technologies [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 31256-031256. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

