ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (10): 127525-127525.doi: 10.7527/S1000-6893.2022.27525
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Hechao ZHENG1, Jianhui WANG2, Ziyang HU1, Zhonghai ZHANG3, Guangping HE1()
Received:
2022-05-27
Revised:
2022-06-13
Accepted:
2022-08-10
Online:
2023-05-25
Published:
2022-08-31
Contact:
Guangping HE
E-mail:hegp55@ncut.edu.cn
Supported by:
CLC Number:
Hechao ZHENG, Jianhui WANG, Ziyang HU, Zhonghai ZHANG, Guangping HE. Test of aerodynamic modeling accuracy of bird⁃scale flapping⁃wing vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127525-127525.
1 | YANG X W, SONG B F, YANG W Q,et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics,2022,35(6):63-76. |
2 | 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报,2016,37(1):69-80. |
ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1):69-80 (in Chinese). | |
3 | 王国彪,陈殿生,陈科位,等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报,2015,51(13):27-44. |
WANG H B, CHEN D S, CHEN K W,et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering,2015,51(13):27-44 (in Chinese). | |
4 | LANE P, THRONEBERRY G, FERNANDEZ I,et al. Towards bio-inspiration,development,and manufacturing of a flapping-wing micro air vehicle[J]. Drones,2020,4(3):39. |
5 | TANGUDOMKIT K, SMITHMAITRIE P. Aerodynamic experimental investigation and analysis of the flow and thrust generation of the flexible flat flapping wing robot[C] ∥ 2021 Second International Symposium on Instrumentation,Control,Artificial Intelligence,and Robotics(ICA-SYMP). Piscataway: IEEE Press, 2021: 1-6. |
6 | 刘晶, 汪超, 谢鹏, 等. 基于PD控制的仿昆虫扑翼样机研制[J]. 航空学报, 2020, 41(9): 223678. |
LIU J, WANG C, XIE P,et al. Development of insect-like flapping wing micro air vehicle based on PD control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 223678 (in Chinese). | |
7 | 张弘志,宋笔锋,孙中超,等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报,2021, 42(2): 024024. |
ZHANG H Z, SONG B F, SUN Z C,et al. Driving mechanism of flapping wing aircraft:Review and prospect[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 024024 (in Chinese). | |
8 | 董二宝,许旻,李永新,等. 单曲柄双摇杆机构同步性能优化[J]. 机械工程学报,2010,46(7):22-26. |
DONG E B, XU M, LI Y X,et al. Synchronization optimum design of single-crank and double-rockers mechanism[J]. Journal of Mechanical Engineering,2010,46(7):22-26 (in Chinese). | |
9 | HE G P, SU T T, JIA T M,et al. Dynamics analysis and control of a bird scale underactuated flapping-wing vehicle[J]. IEEE Transactions on Control Systems Technology,2020,28(4):1233-1242. |
10 | NGUYEN T A, VUPHAN H, AU T K L,et al. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism[J]. Bioinspiration & Biomimetics,2016,11(4):46001. |
11 | WU P, IFJU P, STANFORD B. Flapping wing structural deformation and thrust correlation study with flexible membrane wings[J]. AIAA Journal,2010,48(9):2111-2122. |
12 | MUELLER D, BRUCK H A, GUPTA S K. Measurement of thrust and lift forces associated with drag of compliant flapping wing for micro air vehicles using a new test stand design[J]. Experimental Mechanics,2010,50(6):725-735. |
13 | COLMENARES D, KANIA R, ZHANG W,et al. Compliant wing design for a flapping wing micro air vehicle[C] ∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway:IEEE Press, 2015: 32-39. |
14 | FU J J, LIU X H, SHYY W,et al. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings[J]. Bioinspiration & Biomimetics,2018, 13(3): 036001. |
15 | PARAG D, AMRUT M. Experimental investigation of fluid-structure interaction in a bird-like flapping wing[J]. Journal of Fluids and Structures,2019,91:102712. |
16 | YANG W Q, XUAN J L, SONG B F. Experimental study on flexible deformation of a flapping wing with a rectangular planform[J]. International Journal of Aerospace Engineering,2020,2020:1-13. |
17 | MANTIA M L, DABNICHKI P. Effect of the wing shape on the thrust of flapping wing[J]. Applied Mathematical Modelling,2011,35(10):4979-4990. |
18 | YANG W Q, SONG B F, SONG W P,et al. The effects of span-wise and chord-wise flexibility on the aerodynamic performance of micro flapping-wing[J]. Chinese Science Bulletin,2012,57(22):2887-2897. |
19 | LIN T, XIA W, HU S. Effect of chordwise deformation on propulsive performance of flapping wings in forward flight[J]. The Aeronautical Journal,2021,125(1284):430-451. |
20 | ZHAO L, HUANG Q F, DENG X Y, et al. Aerodynamic effects of flexibility in flapping wings[J]. Journal of the Royal Society Interface, 2010, 7(44): 485-497. |
21 | TONG W W, YANG Y, WANG S Z. Estimating thrust from shedding vortex surfaces in the wake of a flapping plate[J]. Journal of Fluid Mechanics, 2021, 920: A10. |
22 | CHEN Y, GRAVISH N, DESBIENS A L,et al. Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing[J]. Journal of Fluid Mechanics, 2016, 791: 1-33. |
23 | 年鹏,宋笔锋,宣建林,等. 扑翼飞行器动力系统建模方法[J]. 航空学报,2021,42(9): 224646. |
NIAN P, SONG B F, XUAN J L,et al. Modeling method for propulsion system of flapping wing vehicles[J]. Acta Aeronautica et Astronautica Sinica,2021,42(9): 224646 (in Chinese). | |
24 | JIAO Z X, ZHAO L F, SHANG Y X,et al. Generic analytical thrust-force model for flapping wings[J]. AIAA Journal,2017, 56(2): 581-593. |
25 | DENG X Y, SCHENATO L, WU W C,et al. Flapping flight for biomimetic robotic insects:Part I-System modeling[J]. IEEE Transactions on Robotics, 2006, 22(4): 776-788. |
[1] | Yilan ZENG, Dong HAN, Zhuangzhuang LIU, Xin ZHOU. Driving rotation characteristics of a compound helicopter’s rotor undergoing upwash in high⁃speed flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529061-529061. |
[2] | Jinghui DENG. Key technologies and development for high-speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085-529085. |
[3] | Wei ZHANG, Ruojun HE. Autonomous trajectory design for IoT data collection by UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329054-329054-1. |
[4] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[5] | Yining ZHANG, Changxuan WEN, Bo PANG, Tianhao ZHU, Jiaxin HE, Zihan JIN. Optimization of occultation observation configuration based on precise repeat ground-track resonant orbit [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329151-329151. |
[6] | Ge WANG, Zhibang WANG, Fuqi WANG, Ben GUAN, Limin WANG, Haoran NING. Numerical study on quasi⁃one⁃dimensional internal ballistics of throttling segregated fuel⁃oxidizer systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 129111-129111. |
[7] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[8] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[9] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[10] | Liu LIU, Xianhong XIANG, Yufei ZHANG, Haixin CHEN, Chuang WEI, Jian ZHU, Pu YANG. A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629630-629630. |
[11] | Yanhua ZHANG, Dengcheng ZHANG, Zhangwen ZHOU, Yuchang LEI, Lin LI. Concept and design of virtual rudder surface aircraft based on circulation control: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629608-629608. |
[12] | Weiping YANG. Development trend of navigation guidance and control technology for new generation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720-529720. |
[13] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[14] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[15] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341