ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (9): 627428-627428.doi: 10.7527/S1000-6893.2022.27428
• special column • Previous Articles Next Articles
Weihong ZHANG(), Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU
Received:
2022-05-12
Revised:
2022-06-06
Accepted:
2022-06-27
Online:
2022-07-22
Published:
2022-07-21
Contact:
Weihong ZHANG
E-mail:zhangwh@nwpu.edu.cn
Supported by:
CLC Number:
Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428.
1 | BABUŠKA I. Homogenization approach in engineering[M]∥Lecture Notes in Economics and Mathematical Systems. Berlin: Springer Berlin Heidelberg, 1976: 137-153. |
2 | ALLAIRE G, GEOFFROY-DONDERS P, PANTZ O. Topology optimization of modulated and oriented periodic microstructures by the homogenization method[J]. Computers & Mathematics With Applications, 2019, 78(7): 2197-2229. |
3 | LU X X, GIOVANIS D G, YVONNET J, et al. A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites[J]. Computational Mechanics, 2019, 64(2): 307-321. |
4 | GHOSH S, LEE K, MOORTHY S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method[J]. International Journal of Solids and Structures, 1995, 32(1): 27-62. |
5 | WANG Z Y, LI P F. Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina[J]. Ceramics International, 2017, 43(9): 6967-6975. |
6 | SHEN L L, SHEN Z B, LI H Y, et al. A Voronoi cell finite element method for estimating effective mechanical properties of composite solid propellants[J]. Journal of Mechanical Science and Technology, 2017, 31(11): 5377-5385. |
7 | FEYEL F, CHABOCHE J L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3-4): 309-330. |
8 | XIA L, BREITKOPF P. Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 524-542. |
9 | TIKARROUCHINE E, BENAARBIA A, CHATZIGEOR⁃ GIOU G, et al. Non-linear FE2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: analysis and experimental validation[J]. Composite Structures, 2021, 255: 112926. |
10 | OTERO F, OLLER S, MARTINEZ X. Multiscale computational homogenization: review and proposal of a new enhanced-first-order method[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 479-505. |
11 | KWON Y R, LEE B C. A mixed element based on Lagrange multiplier method for modified couple stress theory[J]. Computational Mechanics, 2017, 59(1): 117-128. |
12 | MARKOVIC D, IBRAHIMBEGOVIC A. On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48-51): 5503-5523. |
13 | TANG X D, WHITCOMB J D, KELKAR A D, et al. Progressive failure analysis of 2×2 braided composites exhibiting multiscale heterogeneity[J]. Composites Science and Technology, 2006, 66(14): 2580-2590. |
14 | GOYAL D, WHITCOMB J D, TANG X D. Validation of full 3D and equivalent tape laminate modeling of plasticity induced non-linearity in 2×2 braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 747-760. |
15 | CANAL L P, PAPPAS G, BOTSIS J. Large scale fiber bridging in mode I intralaminar fracture. An embedded cell approach[J]. Composites Science and Technology, 2016, 126: 52-59. |
16 | GONZÁLEZ C, LLORCA J. Multiscale modeling of fracture in fiber-reinforced composites[J]. Acta Materialia, 2006, 54(16): 4171-4181. |
17 | DONG J W, HUO N F. A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects[J]. Composite Structures, 2016, 152: 1-10. |
18 | BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence, R.I.: American Mathematical Society, 2011. |
19 | 梁军, 黄富华, 杜善义. 周期性单胞复合材料有效弹性性能的边界力方法[J]. 复合材料学报, 2010, 27(2): 108-112. |
LIANG J, HUANG F H, DU S Y. Boundary force method to predict effective elastic properties of periodical unit cell composite material[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112 (in Chinese). | |
20 | ZHAI J J, CHENG S, ZENG T, et al. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method[J]. Composite Structures, 2017, 176: 664-672. |
21 | YVONNET J. A fast method for solving microstructural problems defined by digital images: a space Lippmann-Schwinger scheme[J]. International Journal for Numerical Methods in Engineering, 2012, 92(2): 178-205. |
22 | SCHNEIDER M. Convergence of FFT-based homogenization for strongly heterogeneous media[J]. Mathematical Methods in the Applied Sciences, 2015, 38(13): 2761-2778. |
23 | WILLOT F, ABDALLAH B, PELLEGRINI Y P. Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[J]. International Journal for Numerical Methods in Engineering, 2014, 98(7): 518-533. |
24 | LIU Z L, BESSA M A, LIU W K. Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319-341. |
25 | VONDŘEJC J, ZEMAN J, MAREK I. Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 258-291. |
26 | LADEVÈZE P, LOISEAU O, DUREISSEIX D. A micro-macro and parallel computational strategy for highly heterogeneous structures[J]. International Journal for Numerical Methods in Engineering, 2001, 52(12): 121-138. |
27 | IBRAHIMBEGOVIĆ A, MARKOVIČ D. Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3089-3107. |
28 | CHENG K T, OLHOFF N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3): 305-323. |
29 | BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
30 | BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202. |
31 | BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635-654. |
32 | QUERIN O M, YOUNG V, STEVEN G P, et al. Computational efficiency and validation of bi-directional evolutionary structural optimisation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(2): 559-573. |
33 | XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896. |
34 | WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246. |
35 | ALLAIRE G, JOUVE F, TOADER A M. A level-set method for shape optimization[J]. Comptes Rendus Mathematique, 2002, 334(12): 1125-1130. |
36 | ZHU J H, ZHANG W H, XIA L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. |
37 | LAKES R. Foam structures with a negative poisson’s ratio[J]. Science, 1987, 235(4792): 1038-1040. |
38 | SIGMUND O. Materials with prescribed constitutive parameters: an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329. |
39 | WANG Y Q, CHEN F F, WANG M Y. Concurrent design with connectable graded microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84-101. |
40 | LI H, LUO Z, GAO L, et al. Topology optimization for concurrent design of structures with multi-patch microstructures by level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 536-561. |
41 | 刘书田, 程耿东. 基于均匀化理论的梯度功能材料优化设计方法[J]. 宇航材料工艺, 1995, 25(6): 21-27. |
LIU S T, CHENG G D. Optimization design method of functionally graded materials based on homogenization theory[J]. Aerospace Materials & Technology, 1995, 25(6): 21-27 (in Chinese). | |
42 | 袁振, 吴长春. 复合材料周期性线弹性微结构的拓扑优化设计[J]. 固体力学学报, 2003, 24(1): 40-45. |
YUAN Z, WU C C. Topology optimization for periodic linear elastic microstructures of composite materials[J]. Acta Mechanica Solida Sinica, 2003, 24(1): 40-45 (in Chinese). | |
43 | HUANG X D, ZHOU S W, SUN G Y, et al. Topology optimization for microstructures of viscoelastic composite materials[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 503-516. |
44 | XIA L, BREITKOPF P. Design of materials using topology optimization and energy-based homogenization approach in Matlab[J]. Structural and Multidisciplinary Optimization, 2015, 52(6): 1229-1241. |
45 | CADMAN J E, ZHOU S W, CHEN Y H, et al. On design of multi-functional microstructural materials[J]. Journal of Materials Science, 2013, 48(1): 51-66. |
46 | RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 1-10. |
47 | ADAMS B L, LYON M, HENRIE B L, et al. Spectral integration of microstructure and design[J]. Materials Science Forum, 2002, 408-412: 487-492. |
48 | ZHANG W H, SUN S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993-1011. |
49 | YAN J, CHENG G D, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4): 259-266. |
50 | SU W Z, LIU S T. Size-dependent optimal microstructure design based on couple-stress theory[J]. Structural and Multidisciplinary Optimization, 2010, 42(2): 243-254. |
51 | XIA L, BREITKOPF P. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 147-167. |
52 | XIA L, BREITKOPF P. Recent advances on topology optimization of multiscale nonlinear structures[J]. Archives of Computational Methods in Engineering, 2017, 24(2): 227-249. |
53 | XU Y J, ZHU J H, WU Z, et al. A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization[J]. Advanced Composites and Hybrid Materials, 2018, 1(3): 460-477. |
54 | NOMURA T, KAWAMOTO A, KONDOH T, et al. Inverse design of structure and fiber orientation by means of topology optimization with tensor field variables[J]. Composites Part B: Engineering, 2019, 176: 107187. |
55 | YUAN S Q, LI S Y, ZHU J H, et al. Additive manufacturing of polymeric composites from material processing to structural design[J]. Composites Part B: Engineering, 2021, 219: 108903. |
56 | BODDETI N, ROSEN D W, MAUTE K, et al. Multiscale optimal design and fabrication of laminated composites[J]. Composite Structures, 2019, 228: 111366. |
57 | BODDETI N, TANG Y L, MAUTE K, et al. Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites[J]. Scientific Reports, 2020, 10: 16507. |
58 | PAPAPETROU V S, PATEL C, TAMIJANI A Y. Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites[J]. Composites Part B: Engineering, 2020, 183: 107681. |
59 | LEARY M, MERLI L, TORTI F, et al. Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures[J]. Materials & Design, 2014, 63: 678-690. |
60 | LIU S T, LI Q H, CHEN W J, et al. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures[J]. Frontiers of Mechanical Engineering, 2015, 10(2): 126-137. |
61 | ZHOU M D, LAZAROV B S, WANG F W, et al. Minimum length scale in topology optimization by geometric constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 266-282. |
62 | 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. |
WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese). | |
63 | HUANG W D, LIN X. Research progress in laser solid forming of high-performance metallic components at the state key laboratory of solidification processing of China[J]. 3D Printing and Additive Manufacturing, 2014, 1(3): 156-165. |
64 | YANG J K, GU D D, LIN K J, et al. Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: numerical simulation and selective laser melting process[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91: 59-67. |
65 | 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 0500002. |
GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002 (in Chinese). | |
66 | 刘建涛, 林鑫, 吕晓卫, 等. Ti-Ti2AlNb功能梯度材料的激光立体成形研究[J]. 金属学报, 2008, 44(8): 1006-1012. |
LIU J T, LIN X, LÜ X W, et al. Research on laser solid forming of a functionally gradient Ti-Ti2AlNb alloy[J]. Acta Metallurgica Sinica, 2008, 44(8): 1006-1012 (in Chinese). | |
67 | 杨模聪, 林鑫, 许小静, 等. 激光立体成形Ti60-Ti2AlNb梯度材料的组织与相演变[J]. 金属学报, 2009, 45(6): 729-736. |
YANG M C, LIN X, XU X J, et al. Microstructure and phase evolution in Ti60-Ti2AlNb gradient material prepared by laser solid forming[J]. Acta Metallurgica Sinica, 2009, 45(6): 729-736 (in Chinese). | |
68 | 解航, 张安峰, 李涤尘, 等. 激光金属直接成形Ti6Al4V-CoCrMo梯度材料开裂研究[J]. 中国激光, 2013, 40(11): 97-103. |
XIE H, ZHANG A F, LI D C, et al. Research on the cracking of Ti6Al4V-CoCrMo gradient material fabricated by laser metal direct forming[J]. Chinese Journal of Lasers, 2013, 40(11): 97-103 (in Chinese). | |
69 | SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 616: 1-11. |
70 | EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598: 327-337. |
71 | SATO Y, YAMADA T, IZUI K, et al. Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 1391-1409. |
72 | WANG Y G, KANG Z. Structural shape and topology optimization of cast parts using level set method[J]. International Journal for Numerical Methods in Engineering, 2017, 111(13): 1252-1273. |
73 | HOU J, ZHU J H, HE F, et al. Stiffeners layout design of thin-walled structures with constraints on multi-fastener joint loads[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1441-1450. |
74 | LI Q H, CHEN W J, LIU S T, et al. Topology optimization design of cast parts based on virtual temperature method[J]. Computer-Aided Design, 2018, 94: 28-40. |
75 | WANG C, XU B, MENG Q X, et al. Topology optimization of cast parts considering parting surface position[J]. Advances in Engineering Software, 2020, 149: 102886. |
76 | LANGELAAR M. Topology optimization for multi-axis machining[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351: 226-252. |
77 | LEE H Y, ZHU M, GUEST J K. Topology optimization considering multi-axis machining constraints using projection methods[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114464. |
78 | GASICK J, QIAN X P. Simultaneous topology and machine orientation optimization for multiaxis machining[J]. International Journal for Numerical Methods in Engineering, 2021, 122(24): 7504-7535. |
79 | MIRZENDEHDEL A M, BEHANDISH M, NELATURI S. Topology optimization with accessibility constraint for multi-axis machining[J]. Computer-Aided Design, 2020, 122: 102825. |
80 | MORRIS N, BUTSCHER A, IORIO F. A subtractive manufacturing constraint for level set topology optimization[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1573-1588. |
81 | LANGELAAR M. An additive manufacturing filter for topology optimization of print-ready designs[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 871-883. |
82 | JOHNSON T E, GAYNOR A T. Three-dimensional projection-based topology optimization for prescribed-angle self-supporting additively manufactured structures[J]. Additive Manufacturing, 2018, 24: 667-686. |
83 | VAN DE VEN E, MAAS R, AYAS C, et al. Continuous front propagation-based overhang control for topology optimization with additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57(5): 2075-2091. |
84 | VAN DE VEN E, MAAS R, AYAS C, et al. Overhang control based on front propagation in 3D topology optimization for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113169. |
85 | QIAN X P. Undercut and overhang angle control in topology optimization: a density gradient based integral approach[J]. International Journal for Numerical Methods in Engineering, 2017, 111(3): 247-272. |
86 | ZHANG K Q, CHENG G D, XU L. Topology optimization considering overhang constraint in additive manufacturing[J]. Computers & Structures, 2019, 212: 86-100. |
87 | ZHANG K Q, CHENG G D. Three-dimensional high resolution topology optimization considering additive manufacturing constraints[J]. Additive Manufacturing, 2020, 35: 101224. |
88 | LIU Y C, ZHOU M D, WEI C, et al. Topology optimization of self-supporting infill structures[J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2289-2304. |
89 | WANG C, ZHANG W H, ZHOU L, et al. Topology optimization of self-supporting structures for additive manufacturing with B-spline parameterization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113599. |
90 | ALLAIRE G, DAPOGNY C, ESTEVEZ R, et al. Structural optimization under overhang constraints imposed by additive manufacturing technologies[J]. Journal of Computational Physics, 2017, 351: 295-328. |
91 | WANG Y G, GAO J C, KANG Z. Level set-based topology optimization with overhang constraint: towards support-free additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 591-614. |
92 | GUO X, ZHOU J H, ZHANG W S, et al. Self-supporting structure design in additive manufacturing through explicit topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 27-63. |
93 | ZHANG W H, ZHOU L. Topology optimization of self-supporting structures with polygon features for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 334: 56-78. |
94 | ZHOU L, SIGMUND O, ZHANG W H. Self-supporting structure design with feature-driven optimization approach for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114110. |
95 | LI Q H, CHEN W J, LIU S T, et al. Structural topology optimization considering connectivity constraint[J]. Structural and Multidisciplinary Optimization, 2016, 54(4): 971-984. |
96 | ZHOU L, ZHANG W H. Topology optimization method with elimination of enclosed voids[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 117-136. |
97 | XIONG Y L, YAO S, ZHAO Z L, et al. A new approach to eliminating enclosed voids in topology optimization for additive manufacturing[J]. Additive Manufacturing, 2020, 32: 101006. |
98 | GAYNOR A T, JOHNSON T E. Eliminating occluded voids in additive manufacturing design via a projection-based topology optimization scheme[J]. Additive Manufacturing, 2020, 33: 101149. |
99 | DUNNING P D. Minimum length-scale constraints for parameterized implicit function based topology optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 155-169. |
100 | HOANG V N, JANG G W. Topology optimization using moving morphable bars for versatile thickness control[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 153-173. |
101 | WANG R X, ZHANG X M, ZHU B L. Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351: 667-693. |
102 | LIU J K, MA Y S. A new multi-material level set topology optimization method with the length scale control capability[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 444-463. |
103 | LIU J K. Piecewise length scale control for topology optimization with an irregular design domain[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351: 744-765. |
104 | 王罡, 任珂, 胡毅森, 等. 基于微观组织特征的航天铝铜合金力学行为研究[J]. 机械工程学报, 2018, 54(9): 77-85. |
WANG G, REN K, HU Y S, et al. Microstructural characteristics-based mechanical behavior of aerospace Al-Cu alloys[J]. Journal of Mechanical Engineering, 2018. 54(9): 77-85 (in Chinese). | |
105 | 王宝善, 贾蔚菊, 渠维猛, 等. 锻造工艺对Ti60合金棒材组织和性能的影响[J]. 钛工业进展, 2011, 28(1): 8-11. |
WANG B S, JIA W J, QU W M, et al. Influence of forging processes on microstructure and mechanical properties of Ti60 alloy[J]. Titanium Industry Progress, 2011, 28(1): 8-11 (in Chinese). | |
106 | 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111-1126. |
LIN X, HUANG W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111-1126 (in Chinese). | |
107 | DAI S, DENG Z C, YU Y J, et al. Microstructure and constitutive model for flow behavior of AlSi10Mg by Selective Laser Melting[J]. Materials Science and Engineering: A, 2021, 814: 141157. |
108 | SOUZA P M, BELADI H, SINGH R P, et al. An analysis on the constitutive models for forging of Ti6Al4V alloy considering the softening behavior[J]. Journal of Materials Engineering and Performance, 2018, 27(7): 3545-3558. |
109 | 史振学, 刘世忠, 李嘉荣. 一种第四代单晶高温合金不同温度的拉伸性能各向异性[J]. 航空材料学报, 2019, 39(4): 78-85. |
SHI Z X, LIU S Z, LI J R. Tensile anisotropy of the fourth generation single crystal superalloy at different temperatures[J]. Journal of Aeronautical Materials, 2019, 39(4): 78-85 (in Chinese). | |
110 | VIJAY A, PAULSON N, SADEGHI F. A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[J]. International Journal of Fatigue, 2018, 106: 92-102. |
111 | WANG S H, MA Y B, DENG Z C, et al. Implementation of an elastoplastic constitutive model for 3D-printed materials fabricated by stereolithography[J]. Additive Manufacturing, 2020, 33: 101104. |
112 | LI S Y, YUAN S Q, ZHU J H, et al. Additive manufacturing-driven design optimization: building direction and structural topology[J]. Additive Manufacturing, 2020, 36: 101406. |
113 | LI S Y, WEI H K, YUAN S Q, et al. Collaborative optimization design of process parameter and structural topology for laser additive manufacturing[J]. Chinese Journal of Aeronautics, 2021 (in press). |
114 | LI S Y, YUAN S Q, ZHU J H, et al. Multidisciplinary topology optimization incorporating process-structure-property-performance relationship of additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2141-2157. |
115 | PARK S I, ROSEN D W. Quantifying effects of material extrusion additive manufacturing process on mechanical properties of lattice structures using as-fabricated voxel modeling[J]. Additive Manufacturing, 2016, 12: 265-273. |
116 | LI S Y, YUAN S Q, ZHU J H, et al. Optimal and adaptive lattice design considering process-induced material anisotropy and geometric inaccuracy for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 35. |
117 | GAO J, LUO Z, LI H, et al. Topology optimization for multiscale design of porous composites with multi-domain microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 451-476. |
118 | ZHANG Y, XIAO M, GAO L, et al. Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures[J]. Mechanical Systems and Signal Processing, 2020, 135: 106369. |
119 | CHU S, GAO L, XIAO M, et al. Multiscale topology optimization for coated structures with multifarious-microstructural infill[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1473-1494. |
120 | WANG Y G, KANG Z. Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 340-364. |
121 | XU Z, ZHANG W H, ZHOU Y, et al. Multiscale topology optimization using feature-driven method[J]. Chinese Journal of Aeronautics, 2020, 33(2): 621-633. |
122 | GROEN J P, SIGMUND O. Homogenization-based topology optimization for high-resolution manufacturable microstructures[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1148-1163. |
123 | WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 869-894. |
124 | WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50. |
125 | WHITE D A, ARRIGHI W J, KUDO J, et al. Multiscale topology optimization using neural network surrogate models[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1118-1135. |
126 | WU Z J, XIA L, WANG S T, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 602-617. |
127 | LIU Z, XIA L, XIA Q, et al. Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations[J]. Structural and Multidisciplinary Optimization, 2020, 61(6): 2227-2235. |
128 | WU T Y, LI S. An efficient multiscale optimization method for conformal lattice materials[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1063-1083. |
129 | ZHOU H, ZHU J H, WANG C, et al. Hierarchical structure optimization with parameterized lattice and multiscale finite element method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 39. |
130 | WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: a review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480. |
131 | CHEN W J, ZHENG X N, LIU S T. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing[J]. Materials (Basel, Switzerland), 2018, 11(11): 2073. |
132 | TANG Y L, KURTZ A, ZHAO Y F. Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing[J]. Computer-Aided Design, 2015, 69: 91-101. |
133 | WANG C, ZHU J H, WU M Q, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398. |
134 | ZHOU M D, GENG D. Multi-scale and multi-material topology optimization of channel-cooling cellular structures for thermomechanical behaviors[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113896. |
135 | LIU S T, LI Q H, LIU J H, et al. A realization method for transforming a topology optimization design into additive manufacturing structures[J]. Engineering, 2018, 4(2): 277-285. |
136 | JIU L P, ZHANG W H, MENG L, et al. A CAD-oriented structural topology optimization method[J]. Computers & Structures, 2020, 239: 106324. |
137 | ZHANG S L, LE C, GAIN A L, et al. Fatigue-based topology optimization with non-proportional loads[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 805-825. |
138 | ZHAO L, XU B, HAN Y S, et al. Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads[J]. Engineering Structures, 2020, 205: 110089. |
139 | YANG Q, GAO B, XU Z Y, et al. Topology optimisations for integrated thermal protection systems considering thermo-mechanical constraints[J]. Applied Thermal Engineering, 2019, 150: 995-1001. |
140 | CHEN F, ZHU J H, DU X X, et al. Shape preserving topology optimization for structural radar cross section control[J]. Chinese Journal of Aeronautics, 2022, 35(6): 198-210. |
141 | CHEN F, ZHU J H, ZHANG W H. Radar cross section minimization for step structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2022, 65(2): 51. |
142 | YANG D, YIN Y F, ZHANG Z K, et al. Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing[J]. Materials Letters, 2020, 281: 128571. |
143 | SUN P, ZHANG Z D, GUO H, et al. Topological optimization of hierarchical honeycomb acoustic metamaterials for low-frequency extreme broad band gaps[J]. Applied Acoustics, 2022, 188: 108579. |
144 | GU X J, YANG K K, WU M Q, et al. Integrated optimization design of smart morphing wing for accurate shape control[J]. Chinese Journal of Aeronautics, 2021, 34(1): 135-147. |
145 | CHEN X, LIU J, LI Q. The smart morphing winglet driven by the piezoelectric Macro Fiber Composite actuator[J]. The Aeronautical Journal, 2022, 126(1299): 830-847. |
[1] | Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677. |
[2] | Lun TANG, Shengfu YU, Bo ZHENG, Yusheng SHI, Ying CHEN. Development and application of in⁃situ Al2O3 aluminum alloy powder core wire for cylindrical lattice [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 626864-626864. |
[3] | Zhongqin LIN, Zhongqi YU, Donghua DAI, Xiaoguang FAN, Shengfu YU, Dongdong GU, Shuhui LI, Yusheng SHI. Development and prospect of metal spinning: Additive hybrid manufacturing technology for complex thin⁃walled component with high ribs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627493-627493. |
[4] | Mengqi GU, Jiacai ZHU, Wanlin GUO, Song XUE. Prospects for fatigue durability and reliability of reusable launch vehicle structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628299-628299. |
[5] | Yunwen FENG, Xinyi LIN, Xiaofeng XUE, Xiang YANG, Jiaqi LIU. Design of civil aircraft explosion-proof structure for high reliable one-way blasting [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228297-228297. |
[6] | Zhiqiang ZHANG, Qingze GOU, Xuecheng LU, Hao WANG, Yiran CAO, Zhiyong GUO. Droplet transfer behavior of high strength aluminum alloy CMT+P arc additive manufacturing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 427881-427881. |
[7] | Xiangtao MA, Fayao WANG, Yingjie ZHU, Peng HAO, Bo WANG, Guanri LIU. Accelerated optimization design of stiffened cylindrical shell for imperfection tolerance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 226430-226430. |
[8] | LI Zhiqiang, CHEN Wei. Application progress of power beam processing technology in aeronautical industry [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 526882-526882. |
[9] | LI Dichen, LU Zhongliang, TIAN Xiaoyong, ZHANG Hang, YANG Chuncheng, CAO Yi, MIAO Kai. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525387-525387. |
[10] | YAO Yansheng, ZHOU Ruigen, ZHANG Chenglin, MEI Tao, WU Min. Surface polishing technology for additive manufacturing of complex metal components [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525202-525202. |
[11] | ZHANG Peiyu, ZHOU Xin, LI Yinghong. Progress on high energy beam repair of single crystal turbine blades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525610-525610. |
[12] | LI Hui, LI Guangxian, GAO Ruilin, JIN Xin, LIU Lu, LI Chaojiang, Songlin DING. Research progress of post-processing of stainless steel additive manufacturing parts [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525847-525847. |
[13] | WANG Tianshuai, HE Xiaofan, WANG Jinyu, LI Yuhai. Estimation method for DFR value of DED-TA15 titanium alloy based on bimodal lognormal distribution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225013-225013. |
[14] | LI Dong, LI Pingqi. Technological breakthroughs of LM-5 and future developments of China's launch vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527269-527269. |
[15] | GUO Lei, GAO Yuan, XIN Hui. Laser modification parameters optimization and structural design of thermal barrier coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 424114-424114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341