ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (2): 426800-426800.doi: 10.7527/S1000-6893.2021.26800
Previous Articles Next Articles
Gongye YU1,2, Weidong CAI3, Minghui HU1,2, Wencai LIU4, Bo MA1,2()
Received:
2021-12-09
Revised:
2021-12-15
Accepted:
2021-12-23
Online:
2023-01-25
Published:
2022-01-11
Contact:
Bo MA
E-mail:mabo@mail.buct.edu.cn
Supported by:
CLC Number:
Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800.
Table 5
Diagnostic accuracy of ten-fold crossover experiment (%)
实验次数 | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 62.83 | 99.91 | 94.40 | 72.45 | 99.23 | 93.13 | 94.98 | 99.43 |
2 | 61.92 | 99.69 | 99.36 | 70.93 | 98.21 | 98.02 | 92.37 | 96.74 |
3 | 59.32 | 99.20 | 82.29 | 69.91 | 99.67 | 86.69 | 93.66 | 99.81 |
4 | 62.87 | 99.65 | 98.62 | 68.32 | 98.25 | 81.04 | 91.87 | 99.96 |
5 | 58.95 | 99.58 | 99.89 | 71.38 | 98.36 | 98.13 | 91.35 | 99.16 |
6 | 64.22 | 99.85 | 98.24 | 70.16 | 97.91 | 96.47 | 92.39 | 97.99 |
7 | 58.79 | 99.72 | 98.64 | 69.94 | 98.28 | 82.69 | 90.98 | 99.33 |
8 | 63.74 | 99.99 | 98.71 | 68.33 | 99.16 | 93.40 | 92.51 | 98.91 |
9 | 61.18 | 99.85 | 95.82 | 68.37 | 99.02 | 97.33 | 91.35 | 99.16 |
10 | 60.06 | 99.58 | 96.38 | 70.31 | 99.06 | 89.04 | 92.94 | 97.31 |
平均 | 61.39 | 99.70 | 96.24 | 70.01 | 98.72 | 91.60 | 92.44 | 98.78 |
Table 6
Diagnostic accuracy under different common parameter distributions (%)
单变量 | 0.01 | 0.1 | 1 | 10 | 100 | 1 000 | 10 000 | 100 000 | 0.01 | 0.1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
准确率 | 36.97 | 32.29 | 40.79 | 85.64 | 74.29 | 46.78 | 45.58 | 43.30 | 36.97 | 32.29 | |
单变量 | 0.000 1 | 0.001 | 0.01 | 0.1 | 0.5 | 1 | 5 | 10 | 0.000 1 | 0.001 | |
准确率 | 71.43 | 75.72 | 77.74 | 69.18 | 77.58 | 69.91 | 46.66 | 38.04 | 71.43 | 75.72 | |
单变量 | 0.000 1 | 0.001 | 0.01 | 0.1 | 0.5 | 1 | 5 | 10 | 0.000 1 | 0.001 | |
准确率 | 83.86 | 82.53 | 84.11 | 81.58 | 77.71 | 73.71 | 73.55 | 68.84 | 83.86 | 82.53 | |
三变量 | |||||||||||
准确率 | 72.17 |
Table 8
Comparison of test results accuracy (%)
诊断任务 | 平均 | ||||||||
---|---|---|---|---|---|---|---|---|---|
DA-MCGM | 61.39 | 99.70 | 96.24 | 70.01 | 98.72 | 91.60 | 92.44 | 98.78 | 88.61 |
TCA | 42.84 | 20.86 | 39.99 | 44.63 | 24.46 | 32.11 | 51.53 | 59.51 | 39.49 |
GFK | 44.22 | 31.42 | 42.27 | 45.97 | 37.21 | 38.83 | 53.69 | 60.28 | 44.24 |
DaNN | 57.96 | 35.67 | 41.66 | 59.36 | 27.74 | 36.32 | 60.97 | 63.43 | 47.39 |
FIne-tune | 40.14 | 33.33 | 37.25 | 41.79 | 33.33 | 37.17 | 53.64 | 57.72 | 41.80 |
CNN | 52.04 | 18.61 | 28.86 | 56.43 | 22.92 | 29.66 | 56.32 | 63.09 | 40.99 |
1 | SUN H B, WANG J, CHEN K. A tip clearance prediction model for multistage rotors and stators in aero-engines [J]. Chinese Journal of Aeronautics, 2021, 34(2): 343-357. |
2 | 王辰, 左彦飞, 江志农, 等. 全转速系数矩阵降维重构的燃机不平衡量逆推方法[J]. 航空学报, 2020, 41(11): 223670. |
WANG C, ZUO Y F, JIANG Z N, et al. A backstepping method of gas turbine unbalance vector based on dimension reduction and reconstruction of full speed coefficient matrix[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 223670 (in Chinese). | |
3 | 孙灿飞, 王友仁. 直升机行星传动轮系故障诊断研究进展[J]. 航空学报, 2017, 38(7): 111-124. |
SUN C F, WANG Y R. Advance in study of fault diagnosis of helicopter planetary gears[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 111-124 (in Chinese). | |
4 | MA S J, CHENG B, SHANG Z W. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 104: 155-170. |
5 | ZHANG Y H, ZHOU T T, HUANG X F, et al. Fault diagnosis of rotating machinery based on recurrent neural networks[J]. Measurement, 2020, 171: 108774. |
6 | 王庆锋, 刘家赫, 卫炳坤, 等. 数据驱动的聚类分析故障识别方法研究[J]. 机械工程学报, 2020, 56(18):7-14. |
WANG Q F, LIU J H, WEI B K, et al. Research on data-driven clustering analysis fault identification method[J]. Journal of Mechanical Engineering, 2020, 56(18): 7-14 (in Chinese). | |
7 | 沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7): 81-88. |
SHEN C Q, TANG S H, JIANG X X, et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering, 2019, 55(7): 81-88 (in Chinese). | |
8 | 沈飞, 陈超, 徐佳文, 等. 基于时间迁移模型的旋转机械实时故障诊断[J]. 仪器仪表学报, 2019, 40(10): 84-94. |
SHEN F, CHEN C, XU J W, et al. Time transfer model based rotating machine real-time fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 84-94 (in Chinese). | |
9 | LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. |
10 | LI C, ZHANG S H, QIN Y, et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing, 2020, 407: 121-135. |
11 | 徐颖强, 陈仙亮, 曹栋波. 样本量为2的极小样本相容性检验方法[J]. 航空学报, 2018, 39(5): 144-151. |
XU Y Q, CHEN X L, CAO D B. Compatibility test method in minimal samples situation with two samples[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 144-151 (in Chinese). | |
12 | CHEN C, LI Z H, YANG J, et al. A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis[C]∥2017 29th Chinese Control and Decision Conference (CCDC), 2017. |
13 | 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8. |
LEI Y G, YANG B, DU Z J, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8 (in Chinese). | |
14 | 康守强, 邹佳悦, 王玉静, 等. 基于无监督特征对齐的变负载下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2020, 40(1): 274-281. |
KANG S Q, ZOU J Y, WANG Y J, et al. Fault diagnosis method of a rolling bearing under varying loads based on unsupervised feature alignment[J]. Proceedings of the CSEE, 2020, 40(1): 274-281 (in Chinese). | |
15 | LIAO Y X, HUANG R Y, LI J P, et al. Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8064-8075. |
16 | SHEN F, CHEN C, YAN R Q, et al. Bearing fault diagnosis based on SVD feature extraction and transfer learning classification[C]∥2015 Prognostics and System Health Management Conference, 2015. |
17 | 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. |
SHAO H D, ZHANG X Y, CHENG J S, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90 (in Chinese). | |
18 | 罗嘉宁. 实验与仿真数据驱动的滚动轴承故障严重性评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LUO J N. Research on experimental and simulation data-driven fault severity assessment of rolling element bearings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
19 | 董韵佳. 基于动力学仿真和迁移学习的滚动轴承故障诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
DONG Y J. Investigation of dynamic simulation and transfer learning based fault diagnosis method for rolling element bearings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
20 | 马波, 蔡伟东, 赵大力. 基于GAN样本生成技术的智能诊断方法[J]. 振动与冲击, 2020, 39(18): 153-160. |
MA B, CAI W D, ZHAO D L. Intelligent diagnosis method based on GAN sample generation technology[J]. Journal of Vibration and Shock, 2020, 39(18): 153-160 (in Chinese). | |
21 | 袁壮, 董瑞, 张来斌, 等. 深度领域自适应及其在跨工况故障诊断中的应用[J]. 振动与冲击, 2020, 39(12): 286-293. |
YUAN Z, DONG R, ZHANG L B, et al. Deep domain adaptation and its application in fault diagnosis across working conditions[J]. Journal of Vibration and Shock, 2020, 39(12): 286-293 (in Chinese). | |
22 | 柏壮壮, 卢一相, 高清维, 等. 基于自适应紧框架学习的轴承故障诊断[J]. 振动与冲击, 2021, 40(12): 296-303. |
BAI Z Z, LU Y X, GAO Q W, et al. Bearing fault diagnosis based on adaptive tight frame learning[J]. Journal of Vibration and Shock, 2021, 40(12): 296-303 (in Chinese). | |
23 | 董光玲, 姚郁, 贺风华, 等. 制导精度一体化试验的Bayesian样本量计算方法[J]. 航空学报, 2015, 36(2): 575-584. |
DONG G L, YAO Y, HE F H, et al. Bayesian sample size determination for integrated test of missile hit accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 575-584 (in Chinese). | |
24 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323. |
25 | SMITH W A, RANDALL R B, Randall. Rolling element bearing diagnostics using the case western reserve university data: a benchmark study[J]. Mechanical Systems & Signal Processing, 2015, 64-65: 100 -131. |
26 | LEE D, SIU V, CRUZ R, et al. Convolutional neural net and bearing fault analysis[C]∥Proceedings of the International Conference on Data Mining, 2016: 194-200. |
27 | 刘海宁, 宋方臻, 窦仁杰, 等. 小数据条件下基于测地流核函数的域自适应故障诊断方法研究[J]. 振动与冲击, 2018, 37(18): 36-42. |
LIU H N, SONG F Z, DOU R J, et al. Domain adaptive fault diagnosis based on the geodesic flow kernel under small data condition[J]. Journal of Vibration and Shock, 2018, 37(18): 36-42 (in Chinese). | |
28 | PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22 (2): 199-210. |
29 | GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
30 | CHEN C, SHEN F, XU J W, et al. Domain adaptation-based transfer learning for gear fault diagnosis under varying working conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3500510. |
31 | CHEN X H, ZHANG B, GAO D, et al. Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971-987. |
32 | 杨国安. 滚动轴承故障诊断实用技术[M]. 北京: 中国石化出版社, 2012. |
YANG G A. Techniques for rolling bearing fault diagnosis[M]. Beijing: China Petrochemical Press, 2012 (in Chinese). |
[1] | Minghui HU, Jinji GAO, Zhinong JIANG, Weimin WANG, Limin ZOU, Tao ZHOU, Yunfeng FAN, Yue WANG, Jiaxin FENG, Chenyang LI. Research progress on vibration monitoring and fault diagnosis for aero-engine [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194-630194. |
[2] | Zhanjun HUANG, Xin DONG, Muyu LU, Ruitao ZHANG, Zhaoyang YAN, An ZHANG. Fault diagnosis of inverter of aviation HVDC sysytem based on DRSN and voltage amplitude analysis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328685-328685. |
[3] | Tianqing LI, Weimin WANG, Xulong ZHANG, Shuhui WANG, Zhenyu FU. Identification method of rotor blade axial displacement based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228682-228682. |
[4] | Jie LI, Wenxin HUANG, Yiming CAI, Siyuan WANG, Yufei GAO, Xuefeng JIANG. Fault diagnosis and fault tolerant control of position sensor based on DFPMM [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329307-329307. |
[5] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[6] | Jinrui WANG, Shanshan JI, Zongzhen ZHANG, Zhenyun CHU, Baokun HAN, Huaiqian BAO. Parallel sparse filtering for fault diagnosis under bearing acoustic signal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426887-426887. |
[7] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[8] | Haowen LUO, Shaoming HE, Tianyu JIN, Zichao LIU. Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328400-328400. |
[9] | Lianzi WANG, Ling WANG, Daiyin ZHU. An ISAR autofocus imaging algorithm based on FCN and transfer learing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328172-328172. |
[10] | Chenghao GUO, Jinsong YU, Yue SONG, Qi YIN, Jiaxuan LI. Application of digital twin⁃based aircraft landing gear health management technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227629-227629. |
[11] | Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851-025851. |
[12] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
[13] | ZHANG Zhongqiang, ZHANG Xin, WANG Jiaxu, LIU Zhiwen. Reweighted kurtogram for aero-engine fault diagnosis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625445-625445. |
[14] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
[15] | ZHANG Shuo, LIU Zhiwen. Structured Bayesian sparse representation of aero-engine bearing failures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625056-625056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341