Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (17): 328172-328172.doi: 10.7527/S1000-6893.2023.28172
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Lianzi WANG, Ling WANG(), Daiyin ZHU
Received:
2022-10-26
Revised:
2022-11-17
Accepted:
2023-01-11
Online:
2023-09-15
Published:
2023-02-10
Contact:
Ling WANG
E-mail:tulip_wling@nuaa.edu.cn
Supported by:
CLC Number:
Lianzi WANG, Ling WANG, Daiyin ZHU. An ISAR autofocus imaging algorithm based on FCN and transfer learing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328172-328172.
1 | YU X, ZHU D Y, ZHANG J D, et al. Motion compensation algorithm based on the designing structured gram matrices method[J]. IET Radar, Sonar & Navigation, 2014, 8(3): 209-219. |
2 | ZHU D Y, WANG L, YU Y S, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204-208. |
3 | 汪玲. 逆合成孔径雷达成像关键技术研究[D]. 南京: 南京航空航天大学, 2006: 18-49. |
WANG L. Research on key techniques of inverse synthetic aperture radar imaging[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006: 18-49 (in Chinese). | |
4 | WU W Z, HU P J, XU S Y, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1597-1603. |
5 | BERIZZI F, CORSINI G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191. |
6 | LI X, LIU G S, NI J L. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252. |
7 | CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spotlight synthetic aperture radar: signal processing algorithms[M]. Boston: Artech House, 1995. |
8 | 朱兆达, 邱晓晖, 余志舜. 用改进的多普勒中心跟踪法进行ISAR运动补偿[J]. 电子学报, 1997, 25(3): 65-69. |
ZHU Z D, QIU X H, YU Z S. ISAR motion compensation using modified Doppler centroid tracking method[J]. Acta Electronica Sinica, 1997, 25(3): 65-69 (in Chinese). | |
9 | CHEN V C, MARTORELLA M. 逆合成孔径雷达成像[M]. 胡明春, 孙俊,译.北京:国防工业出版社,2020:107-134. |
CHEN V C, MARTORELLA M. Inverse synthetic aperture radar imaging[M]. HU M C, SUN J, translated. Beijing: National Defense Industry Press, 2020: 107-134 (in Chinese). | |
10 | DENG Y, ZHANG Y H. Improved PGA algorithm based on adaptive range bins selection[C]// 2010 International Conference on Image Analysis and Signal Processing. Piscataway: IEEE Press, 2010: 232-235. |
11 | 闫龙, 郑妍, 李颜超. 改进的机载SAR相位梯度自聚焦算法[J]. 应用科技, 2012, 39(1): 39-43. |
YAN L, ZHENG Y, LI Y C. Improved algorithm of phase gradient autofocus for air-borne synthetic aperture radar[J]. Applied Science and Technology, 2012, 39(1): 39-43 (in Chinese). | |
12 | 卿吉明, 徐浩煜, 梁兴东, 等. 一种可用于实时成像的改进PGA算法[J]. 雷达学报, 2015, 4(5): 600-607. |
QING J M, XU H Y, LIANG X D, et al. An improved phase gradient autofocus algorithm used in real-time processing[J]. Journal of Radars, 2015, 4(5): 600-607 (in Chinese). | |
13 | 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36. |
ZHENG Y P, LI G Y, LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20-36 (in Chinese). | |
14 | MOUSAVI A, RICHARD G B. Learning to invert: Sig-nal recovery via deep convolutional networks[C]∥2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2017:2272–2276. |
15 | 何晓萍, 沈雅云. 深度学习的研究现状与发展[J]. 现代情报, 2017, 37(2): 163-170. |
HE X P, SHEN Y Y. Focus and trend of deep learning research[J]. Journal of Modern Information, 2017, 37(2): 163-170 (in Chinese). | |
16 | 张云, 穆慧琳, 姜义成, 等. 基于深度学习的雷达成像技术研究进展[J]. 雷达科学与技术, 2021, 19(5): 467-478. |
ZHANG Y, MU H L, JIANG Y C, et al. Overview of radar imaging techniques based on deep learning[J]. Radar Science and Technology, 2021, 19(5): 467-478 (in Chinese). | |
17 | DING J S, WEN L W, ZHONG C, et al. Video SAR moving target indication using deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 58(10): 7194-7204. |
18 | WEN L W, DING J S, LOFFELD O. Video SAR moving target detection using dual faster R-CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2984-2994. |
19 | 黄少寅. 基于深度学习的高分辨雷达成像技术研究[D]. 成都: 电子科技大学, 2020. |
HUANG S Y. Research on high resolution radar imaging technology based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
20 | LIU Z, YANG S Y, FENG Z X, et al. Fast SAR autofocus based on ensemble convolutional extreme learning machine[J]. Remote Sensing, 2021, 13(14): 2683. |
21 | CHEN J L, YU H W, XU G, et al. Airborne SAR autofocus based on blurry imagery classification[J]. Remote Sensing, 2021, 13(19): 3872. |
22 | TANG W, QIAN J, WANG L, et al. SAR image autofocusing based on Res-Unet[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 2971-2974. |
23 | HU C Y, WANG L, LI Z, et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1203-1207. |
24 | HU C, WANG L, LI Z, et al. A novel inverse synthetic aperture radar imaging method using con-volutional neural networks [C]∥5th International Workshop on Compressed Sensing Applied to Radar, Multimodal Sensing, and Imaging (CoSeRa). Piscataway: IEEE Press 2018: 1-5. |
25 | YUAN Y X, LUO Y, KANG L, et al. Range alignment in ISAR imaging based on deep recurrent neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
26 | SHI H Y, LIU Y, GUO J W, et al. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185. |
27 | WANG L, LOFFELD K, MA K, et al. Sparse ISAR im-aging using a greedy Kalman filtering approach[J]. Signal Processing, 2017,138:1-10. |
28 | 汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846-852. |
WANG L, ZHU D Q, MA K L, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852 (in Chinese). | |
29 | BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: a comparison with state of the art SR techniques[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). Piscataway: IEEE Press, 2016: 227-231. |
30 | WANG L, LOFFELD O. ISAR imaging using a null space ℓ1 minimizing Kalman filter approach[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). Piscataway: IEEE Press, 2016: 232-236. |
31 | 吴东, 郝明. 基于图像对比度的舰船目标成像算法[J]. 电子测量技术, 2017, 40(12): 110-116. |
WU D, HAO M. New ISAR imaging interval selection method for ship targets on sea based on imaging contrast[J]. Electronic Measurement Technology, 2017, 40(12): 110-116 (in Chinese). |
[1] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[2] | Haowen LUO, Shaoming HE, Tianyu JIN, Zichao LIU. Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328400-328400. |
[3] | Haowei NI, Guoyan LIU, Yi ZHOU, Biao ZHANG, Weijie LIU, Chuanlong XU. 3D front tomographic reconstruction of swirl flame by ultraviolet multi-camera imaging [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128331-128331. |
[4] | Wei ZHANG, Binwen WANG, Junling FAN, Shaozheng ZHAN, Ting JIAO, Yu YANG. Ultrasonic nondestructive characterization of impact damage and compression after impact for CFRP based on multi-mode imaging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 426635-426635. |
[5] | ZHENG Yanhong, DENG Xiangjin, JIN Shengyi, CHEN Liping, YAO Meng, ZHAO Zhihui. Imaging posture and coverage of Chang'e 5 surface sampling manipulator cameras [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325388-325388. |
[6] | WANG Yupeng, LYU Shuaishuai, YANG Yu, LI Jiaxin, WANG Yezi. Damage recognition of composite structures based on domain adaptive model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526752-526752. |
[7] | YU Liping, PAN Bing. Single-camera high-temperature three-dimensional digital image correlation method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 527031-527031. |
[8] | SUN Dan, LI Hao, ZHAO Huan, ZHANG Guochen, LI Yu, FENG Yuzhong. Numerical and experimental study of frictional thermal effects of brush seals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 425973-425973. |
[9] | XIA Kailong, HE Qing, ZHANG Yusheng. Measurement method of turbine blade film aperture based on infrared thermal imaging and shrinkage law [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 426271-426271. |
[10] | FANG Jiancheng, WEI Kai, JIANG Lei, XIANG Min, LU Jixi. Scientific facilities for ultrasensitive measurement of magnetic field and inertial rotation and prospects of zero-magnetism science [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527752-527752. |
[11] | XU Luopeng, HU Shi, LIU Qingsong, WANG Qingyuan. High-frequency fatigue infrared heat dissipation of new Al-Li alloy AA2198 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224482-224482. |
[12] | YANG Zhengwei, ZHAO Zhibin, LI Yin, SONG Yuanjia, KOU Guangjie, LI Lei, CHENG Pengfei. Infrared radiation characteristics of CFRP laminate surface under compressive fatigue load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524239-524239. |
[13] | JIANG Bo, QU Ruokun, LI Yandong, LI Chenglong. Object detection in UAV imagery based on deep learning: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524519-524519. |
[14] | ZHAO Yuanyuan, ZENG Fei, LI Yang, GAN Mingyu, SHI Shengxian. 3D measurement technique for film cooling holes based on light-field imaging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524158-524158. |
[15] | LI Wentao, ZHOU Zhenggan, LI Yang. Total focusing method of ultrasonic annular array and its application [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 423657-423657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341