Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (13): 629037-629037.doi: 10.7527/S1000-6893.2023.29037
• special column • Previous Articles Next Articles
Lizhuo DONG1,2, Siqi ZHANG1,2, Zhao ZHANG1,2, Baohai WU1,2()
Received:
2023-05-23
Revised:
2023-06-12
Accepted:
2023-08-20
Online:
2024-07-15
Published:
2023-09-27
Contact:
Baohai WU
E-mail:wubaohai@nwpu.edu.cn
Supported by:
CLC Number:
Lizhuo DONG, Siqi ZHANG, Zhao ZHANG, Baohai WU. Prediction method of blade machining deformation driven by mechanism⁃data hybrid[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629037-629037.
Table 2
Input data of influence factors for data driven model
序号 | 柔度K | 柔度K | 坐标y/mm | 坐标z/mm | 法矢 | 法矢 |
---|---|---|---|---|---|---|
1 | 3.69×10-5 | 7.47×10-6 | -105.023 0 | 1 688.156 1 | -0.844 2 | -0.526 5 |
2 | 3.66×10-5 | 7.27×10-6 | -98.255 0 | 1 688.095 1 | -0.869 2 | -0.486 7 |
3 | 3.64×10-5 | 7.12×10-6 | -91.309 4 | 1 688.047 7 | -0.892 5 | -0.445 1 |
4 | 3.62×10-5 | 7.01×10-6 | -84.191 8 | 1 687.990 6 | -0.915 9 | -0.397 1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
265 | 5.69×10-6 | 4.30×10-6 | 105.919 5 | 319.540 9 | -0.818 4 | -0.567 5 |
266 | 6.00×10-6 | 4.62×10-6 | 116.593 3 | 319.540 1 | -0.818 3 | -0.567 7 |
Table 3
Input data of influence factors for mechanism and data fusion model
序号 | g(x,y)/mm | h(y)/mm2 | h(z)/mm2 |
---|---|---|---|
1 | -0.042 8 | 11 029.788 5 | 2 849 871.018 0 |
2 | -0.043 4 | 9 654.045 0 | 2 849 665.066 6 |
3 | -0.044 0 | 8 337.406 5 | 2 849 505.037 5 |
4 | -0.044 6 | 7 088.259 2 | 2 849 312.265 7 |
⋮ | ⋮ | ⋮ | ⋮ |
265 | -0.007 7 | 11 218.940 5 | 102 106.386 8 |
266 | -0.008 1 | 13 593.997 6 | 102 105.875 5 |
1 | 万敏. 薄壁件周铣加工过程中表面静态误差预测关键技术研究[D]. 西安: 西北工业大学, 2005: 21-46. |
WAN M. Numerical prediction of static form errors in the peripheral milling of thin-walled workpiece[D].Xi’an: Northwestern Polytechnical University, 2005: 21-46 (in Chinese). | |
2 | LI P F, LIU Y, GONG Y D, et al. New deformation prediction of micro thin-walled structures by iterative FEM[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2027-2040. |
3 | YAO C F, ZHANG J Y, CUI M C, et al. Machining deformation prediction of large fan blades based on loading uneven residual stress[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9): 4345-4356. |
4 | 王成龙, 贺永海, 孙杰, 等. 大型薄壁筒件数字减薄中的变形自适应补偿方法[J]. 航天制造技术, 2021(3): 23-27. |
WANG C L, HE Y H, SUN J, et al. A deformation adaptive compensation method for digital thinning of large thin-walled cylinder parts[J]. Aerospace Manufacturing Technology, 2021(3): 23-27 (in Chinese). | |
5 | LI W T, WANG L P, YU G. Chatter prediction in flank milling of thin-walled parts considering force-induced deformation[J]. Mechanical Systems and Signal Processing, 2022, 165: 108314. |
6 | GE G Y, XIAO Y K, FENG X B, et al. An efficient prediction method for the dynamic deformation of thin-walled parts in flank milling[J]. Computer-Aided Design, 2022, 152: 103401. |
7 | JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP, 2013, 12: 37-42. |
8 | 廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5): 166-172. |
LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 166-172 (in Chinese). | |
9 | 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 53(9): 201-208. |
HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 53(9): 201-208 (in Chinese). | |
10 | LI X Y, LI L, YANG Y F, et al. Variance-based sensitivity analysis for the influence of residual stress on machining deformation[J]. Journal of Manufacturing Processes, 2021, 68: 1072-1085. |
11 | ZHAO Z W, LI Y G, LIU C Q, et al. A subsequent-machining-deformation prediction method based on the latent field estimation using deformation force[J]. Journal of Manufacturing Systems, 2022, 63: 224-237. |
12 | LIU F, ZHANG N S, WANG A M, et al. Deformation prediction of thin-walled parts based on BP neural network[C]∥ 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). Piscataway: IEEE Press, 2021: 169-172. |
13 | 郭建烨, 郑若池. 基于改进烟花算法的薄壁件铣削加工参数优化[J]. 制造技术与机床, 2021(6): 70-74, 80. |
GUO J Y, ZHENG R C. Optimization of milling parameters of thin-walled parts based on improved firework algorithm[J]. Manufacturing Technology & Machine Tool, 2021(6): 70-74, 80 (in Chinese). | |
14 | 王峰, 徐雷, 贺云翔, 等. 基于MPSO-BP对5A06铝合金薄壁件变形预测[J]. 组合机床与自动化加工技术, 2019(5): 84-89. |
WANG F, XU L, HE Y X, et al. The deformation prediction of 5A06 aluminum alloy thin-wall parts based on MPSO-BP[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(5): 84-89 (in Chinese). | |
15 | 张俊涛. 基于数字孪生的薄壁件铣削加工变形控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2022: 40-50. |
ZHANG J T. Research on milling deformation control of thin-walled parts based on digital twin[D]. Harbin: Harbin University of Science and Technology, 2022: 40-50 (in Chinese). | |
16 | GUO J, WANG B, HE Z X, et al. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA[J]. Advances in Manufacturing, 2021, 9(4): 483-495. |
17 | 翟小飞, 马仕洪, 魏伟, 等. 基于神经网络和贝叶斯优化的核电站机组功率参数自动寻优方法[J]. 自动化应用, 2021(3): 51-53, 57. |
ZHAI X F, MA S H, WEI W, et al. Automatic optimization method for power parameters of nuclear power plant units based on neural network and Bayesian optimization[J]. Automation Application, 2021(3): 51-53, 57 (in Chinese). | |
18 | HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2681-2692. |
19 | ZHAO Z W, LI Y G, LIU C Q, et al. On-line part deformation prediction based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 561-574. |
20 | ZHAO Z W, LI Y G, LIU C Q, et al. Predicting part deformation based on deformation force data using Physics-informed Latent Variable Model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: 102204. |
21 | CAO L, ZHANG X M, HUANG T, et al. Online monitoring machining errors of thin-walled workpiece: A knowledge embedded sparse Bayesian regression approach[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1259-1270. |
22 | YAN Q H, LUO M, TANG K. Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint[J]. Computer-Aided Design, 2018, 100: 14-29. |
23 | 丛靖梅, 莫蓉, 吴宝海, 等. 面向性能的压气机叶片铣削加工误差分析及统计[J]. 航空制造技术, 2017, 60(15): 38-44. |
CONG J M, MO R, WU B H, et al. Performance oriented machining error analysis and statistic of compressor blade[J]. Aeronautical Manufacturing Technology, 2017, 60(15): 38-44 (in Chinese). | |
24 | 邓宇锋. 透平叶片变切削力加工参数研究[J]. 组合机床与自动化加工技术, 2015(2): 135-137, 141. |
DENG Y F. Research on parameters of the alterable cutting forces in machining turbine blade[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(2): 135-137, 141 (in Chinese). | |
25 | 孙祺. 基于有限元方法的旋转叶片-机匣碰摩动力学研究[D]. 沈阳: 东北大学, 2018: 9-23. |
SUN Q. Research on rotating blade-casing rubbing induced vibration response based on finite element method[D]. Shenyang: Northeastern University, 2018: 9-23 (in Chinese). | |
26 | 潘和林. 钛合金薄壁件铣削变形的预测与控制[D]. 济南: 山东大学, 2016: 51-66. |
PAN H L. Deflection prediction and control in milling of thin-wall titanium alloy components[D]. Jinan: Shandong University, 2016: 51-66 (in Chinese). | |
27 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. |
28 | 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12. |
LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12 (in Chinese). | |
29 | 赵渊, 张夏菲, 周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报, 2009, 29(31): 27-33. |
ZHAO Y, ZHANG X F, ZHOU J Q. Load modeling utilizing nonparametric and multivariate kernel density estimation in bulk power system reliability evaluation[J]. Proceedings of the CSEE, 2009, 29(31): 27-33 (in Chinese). | |
30 | 袁修开, 吕震宙, 池巧君. 基于核密度估计的自适应重要抽样可靠性灵敏度分析[J]. 西北工业大学学报, 2008, 26(3): 297-302. |
YUAN X K, LÜ Z Z, CHI Q J. Achieving efficient estimation of reliability sensitivity of a multi-mode system without requiring knowledge of design point[J]. Journal of Northwestern Polytechnical University, 2008, 26(3): 297-302 (in Chinese). | |
31 | 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164. |
YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese). |
[1] | Gang LI, Yu ZHANG, Si LI, Kunpeng ZHU. Modeling of high speed and high precision milling forces based on kinematics: Comprehensive modeling and experimental [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427261-427261. |
[2] | Zhiyang ZHENG, Yang ZHANG, Zhao ZHANG, Baohai WU, Ying ZHANG. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426805-426805. |
[3] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[4] | CAI Jin, YAN Xue, LI Wei, MENG Qingxun. Numerical analysis of ultrasonic shot peening based on DEM-FEM coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525925-525925. |
[5] | GUO Qiuting, SUN Yan, GUO Zheng, LIU Guangyuan. Separation method for Reynolds number/static aeroelastic coupling effect in wind tunnel test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526312-526312. |
[6] | ZHANG Yizhi, CHENG Cheng, FAN Yitong, LI Gaohua, LI Weipeng. Data-driven correction of turbulence model with physics knowledge constrains in channel flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123282-123282. |
[7] | WANG Yuntao, SUN Yan, MENG Dehong, ZHANG Shujun, YANG Xiaochuan. Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 121202-121202. |
[8] | Zhu Xi-xiong;Zhu Guo-rui;Huang Xu-sheng;Cheng Jiang-ying. THE NON-LINEAR THERMOVISCOELASTIC-PLASTIC CONSTITUTIVE RELATIONS FOR AN AERONAUTICAL PMMA [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1992, 13(11): 594-601. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341