ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (9): 625746-625746.doi: 10.7527/S1000-6893.2021.25746
• Special Topic of NNW Progress and Application • Previous Articles Next Articles
CHEN Qi1,2, CHEN Jianqiang1,2, YUAN Xianxu1,2, GUO Qilong1,2, WAN Zhao1,2, QIU Bo1,2, LI Chen1,2, ZHANG Yifeng1,2
Received:
2021-03-30
Revised:
2021-05-06
Published:
2021-06-08
Supported by:
CLC Number:
CHEN Qi, CHEN Jianqiang, YUAN Xianxu, GUO Qilong, WAN Zhao, QIU Bo, LI Chen, ZHANG Yifeng. Progress on application of National Numerical Windtunnel Project for hypersonic[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625746-625746.
[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese). [2] ZHANG H X, ZHANG L P, ZHANG S H, et al. Some recent progress of high-order methods on structured and unstructured grids in CARDC[J]. Computers & Fluids, 2017, 154:371-389. [3] LI C, CHEN J Q, YUAN X X, et al. Improved weighted NND scheme for shock-capturing[J]. Journal of Physics:Conference Series, 2021, 1786:012043. [4] GUO Q L, SUN D, LI C, et al. A new discontinuity indicator for hybrid WENO schemes[J]. Journal of Scientific Computing, 2020, 83(2):1-33. [5] LI C, SUN D, GUO Q L, et al. A new hybrid WENO scheme on a four-point stencil for Euler equations[J]. Journal of Scientific Computing, 2021, 87(1):1-37. [6] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165:127-143. [7] XU S, MARTIN M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers[J]. Physics of Fluids, 2004, 16(7):2623-2639. [8] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005. [9] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267. [10] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101. [11] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101. [12] 袁先旭, 邓小兵, 谢昱飞, 等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报, 2009, 27(6):723-728. YUAN X X, DENG X B, XIE Y F, et al. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6):723-728(in Chinese). [13] 孙东. 双三角翼背风区大范围分离与旋涡运动的DES模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. SUN D. The investigation of the massively separated flow and vortical flow on the leeward side of double-delta wing by using detached-eddy simulation[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese). [14] MIKHAIL L S, PHILIPPE R S, MIKHAIL K S, et al. A hybird RANS-LES approach with delayed-DES and wall-modeled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649. [15] FUJIIK K S. Computational study of a supersonic base flow using LES/RANS hybrid methodology[J]. AIAA Journal, 2005, 43(6):1265-1275. [16] FRÖHLICH J, VON TERZI D. Hybrid LES/RANS methods for the simulation of turbulent flows[J]. Progress in Aerospace Sciences, 2008, 44(5):349-377. [17] WU X H. Inflow turbulence generation methods[J]. Annual Review of Fluid Mechanics, 2017, 49(1):23-49. [18] 郭启龙, 李辰, 刘朋欣, 等. 合成湍流对空腔流动RANS-LES混合模拟结果的影响[J]. 空气动力学学报, 2020, 38(5):980-988. GUO Q L, LI C, LIU P X, et al. Effect of synthetic turbulence on hybrid RANS-LES simulation of cavity flow[J]. Acta Aerodynamica Sinica, 2020, 38(5):980-988(in Chinese). [19] 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. DENG X B. Large Eddy simulation of incompressible turbulent flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese). [20] KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physics of Fluids, 2000, 12(2):403-417. [21] 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2):1-11. MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2):1-11(in Chinese). [22] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge:The MIT Press, 1972. [23] NICHOLS R H, NELSON C C. Wall function boundary conditions including heat transfer and compressibility[J]. AIAA Journal, 2004, 42(6):1107-1114. [24] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238:699-722. [25] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2):148-160. [26] WANG X G. Advanced RANS and near-wall turbulence modelling for high-speed flow[D]. Mancheste:University of Manchester, 2019. [27] REDA D C, MURPHY J D. Shock wave/turbulent boundary-layer interactions in rectangular channels[J]. AIAA Journal, 1973, 11(2):139-140. [28] SCHVLEIN E. Optical skin friction measurements in short-duration facilities (invited)[C]//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2004. [29] KUSSOY M I, HORSTMAN K C. Documentation of two-and three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2[R]. Washington,D.C.:NASA, 1991. [30] ROY C, BLOTTNER F. Review and assessment of turbulence models for hypersonic flows:2D/asymmetric cases[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. [31] HADER C, FASEL H F. Three-dimensional wave packet in a Mach 6 boundary layer on a flared cone[J]. Journal of Fluid Mechanics, 2020, 885:R3. [32] SIVASUBRAMANIAN J, FASEL H F. Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6[J]. Journal of Fluid Mechanics, 2014, 756:600-649. [33] HADER C, FASEL H F. Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances[J]. Journal of Fluid Mechanics, 2018, 847:R3. [34] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768:175-218. [35] HADER C, LEINEMANN M, FASEL H F. Direct numerical simulations of hypersonic boundary-layer transition for a slender cone[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020. [36] DONG S W, CHEN J Q, YUAN X X, et al. Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone[J]. Advances in Aerodynamics, 2020, 2:29. [37] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京:科学出版社, 2019:1-8. GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing:Science Press, 2019:1-8(in Chinese). [38] 王希季. 航天器进入与返回技术[M]. 北京:中国宇航出版社, 2009:80-81. WANGX J. Spacecraft entry and return technology[M]. Beijing:China Aerospace Publishing House, 2009:80-81(in Chinese). [39] 唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量, 2000, 14(4):1-6. TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):1-6(in Chinese). [40] WEINSTEIN I, AVERY D E, CHAPMAN A J. Aerodynamic heating to the gaps and surfaces of simulated reusable-surface-insulation tile arrays in turbulent flow at Mach 6.6[R]. Washington,D.C.:NASA, 1975. [41] VAN LEER B. Towards the ultimate conservative difference scheme. V.A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136. [42] HAENEL D, SCHWANE R, SEIDER G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations[C]//8th Computational Fluid Dynamics Conference. Reston:AIAA, 1987. [43] 李艳丽, 李素循. 高超声速绕钝舵层流干扰流场特性研究[J]. 宇航学报, 2007, 28(6):1472-1477. LI Y L, LI S X. Investigation of interactive hypersonic laminar flow over blunt fin[J]. Journal of Astronautics, 2007, 28(6):1472-1477(in Chinese). [44] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrateddesign[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese). [45] LI N, CHANG J T, XU K J, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102. [46] TAN H J, SUN S, HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661. [47] SU W Y, JI Y X, CHEN Y. Effects of dynamic backpressure on pseudoshock oscillations in scramjet inlet-isolator[J]. Journal of Propulsion and Power, 2016, 32(2):516-528. [48] WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542. [49] IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97:1-21. [50] 谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4):501-508. TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):501-508(in Chinese). [51] CAO R F, CHANG J T, TANG J F, et al. Switching control of thrust regulation and inlet unstart protection for scramjet engine based on Min strategy[J]. Aerospace Science and Technology, 2015, 40:96-103. [52] SHEIKIN E, KURANOV A. Scramjet with MHD controlled inlet[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005. [53] 李素循. 近空间飞行器的气动复合控制原理及研究进展[J]. 力学进展, 2009, 39(6):740-755. LI S X. Progress in aerodynamics of combination control for vehicles at high speed[J]. Advances in Mechanics, 2009, 39(6):740-755(in Chinese). [54] 唐志共, 杨彦广, 刘君, 等. 横向喷流干扰/控制研究进展[J]. 实验流体力学, 2010, 24(4):1-6. TANG Z G, YANG Y G, LIU J, et al. The investigation and expectation on lateral jet interaction/control[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):1-6(in Chinese). [55] 许晨豪, 蒋崇文, 高振勋, 等. 高超声速飞行器反作用控制系统喷流干扰综述[J]. 力学与实践, 2014, 36(2):147-155, 160. XU C H, JIANG C W, GAO Z X, et al. The jet interaction effects of reaction control systems in hypersonic vehicles[J]. Mechanics in Engineering, 2014, 36(2):147-155, 160(in Chinese). [56] 魏明英. 直接侧向力与气动力复合控制技术综述[J]. 现代防御技术, 2012, 40(1):52-54, 76. WEI M Y. Summary of blended control technology for missiles with lateral jets and aerodynamicsurfaces[J]. Modern Defence Technology, 2012, 40(1):52-54, 76(in Chinese). [57] 贾倩, 魏明英, 郭大勇. 高空轨控式直接侧向力/气动力复合控制方法[J]. 现代防御技术, 2015, 43(6):61-67. JIA Q, WEI M Y, GUO D Y. Orbital lateral thrust/aerodynamic force blended controlmethodin high altitude[J]. Modern Defence Technology, 2015, 43(6):61-67(in Chinese). [58] CASSEL L A. Applying jet interaction technology[J]. Journal of Spacecraft and Rockets, 2003, 40(4):523-537. [59] DICKMANN D A, LU F K. Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1132-1141. [60] KUMAR D, STOLLERY J, SMITH A. Hypersonic jet control effectiveness[C]//International Aerospace Planes and Hypersonics Technologies. Reston:AIAA, 1995. [61] 陈坚强, 张毅锋, 江定武, 等. 侧向多喷口干扰复杂流动数值模拟研究[J]. 力学学报, 2008, 40(6):735-743. CHEN J Q, ZHANG Y F, JIANG D W, et al. Numerical simulation of complex flow withmulti lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):735-743(in Chinese). [62] 刘耀峰, 薄靖龙. 侧向喷流干扰流场建立与消退过程数值模拟[J]. 宇航学报, 2015, 36(8):877-884. LIU Y F, BO J L. Numerical simulation of establishment/vanishment process of lateral jet interaction flowfield[J]. Journal of Astronautics, 2015, 36(8):877-884(in Chinese). [63] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1):28-33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1):28-33(in Chinese). [64] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安:西北工业大学出版社, 2005. LI X G, FANG Q. Winged missile flight dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese). [65] 卢京潮. 自动控制原理[M]. 2版. 西安:西北工业大学出版社, 2009. LU J C. Principles of automatic control[M]. 2nd ed. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese). [66] COCHRAN J E Jr, CHRISTENSEN D E. Free-flight rocket attitude motion due to transverse vibration[J]. Journal of Spacecraft and Rockets, 1980, 17(5):425-431. [67] GASBARRI P, MONTI R, DE ANGELIS C, et al. Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model[J]. Acta Astronautica, 2014, 94(1):515-526. [68] 何斌, 芮筱亭, 陆毓琪. 柔性弹箭飞行力学建模研究[J]. 弹道学报, 2006, 18(1):22-24, 29. HE B, RUI X T, LU Y Q. A study on flight dynamic modeling of flexible shell/rocket[J]. Journal of Ballistics, 2006, 18(1):22-24, 29(in Chinese). [69] ABBAS L K, CHEN D Y, RUI X T. Numerical calculation of effect of elastic deformation on aerodynamic characteristics of a rocket[J]. International Journal of Aerospace Engineering, 2014(3-4):1-11. [70] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese). [71] LIVNE E. The future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6):1066-1092. [72] KARPEL M. Procedures and models for aeroservoelastic analysis and design[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 2001, 81(9):579-592. [73] OLIVEIRA E J, GASBARRI P, MILAGRE DA FONSECA I. Flight dynamics numerical computation of a sounding rocket including elastic deformation model[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015. [74] HUA R H, ZHAO C X, YE Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science and Technology, 2015, 45:128-139. [75] HUA R H, YUAN X X, TANG Z G, et al. Study on flight dynamics of flexible projectiles based on closed-loop feedback control[J]. Aerospace Science and Technology, 2019, 90:327-341. [76] 刘伟,刘君,柳军, 等. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学,2004,22(4):65-68. LIU W, LIU J, LIU J, et al. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004,22(4):65-68(in Chinese). [77] OKTAY E, AKAY H. CFD predictions of dynamic derivatives for missiles[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002. [78] 赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4):442-448. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4):442-448(in Chinese). [79] MACLEAN E M, MUNDY T. Analysis and ground test of aerothermal effects on spherical capsule geometries[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008. |
[1] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[2] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Zhihuai LI, Gang ZHU, Lujun LI, Wei LIU. Resource management for hypersonic target detection by radar network based on responsibility area partitioning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329022-329022. |
[3] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[4] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[5] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[6] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[7] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[8] | Heyong SI, Yaoli WANG, Lihua CAO, Dongchao CHEN. Dynamic behavior of seal-rotor system in a supercritical carbon dioxide turbine during acceleration transition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228652-228652. |
[9] | Hai LI, Yongjun LI, Yuanhao LIU, Weihu ZHAO, Xin LI, Shanghong ZHAO. ESWO⁃based task⁃scheduling algorithm for agile earth observation satellites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329370-329370. |
[10] | Youde XIONG, Chuangchuang LI, Zhenhui ZHANG, Jie WU. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129042-129042. |
[11] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[12] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[13] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[14] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[15] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341