[1] WANG Y X, ZHANG L L, LIU W, et al. Efficient parallel implementation of large scale 3D structured grid CFD applications on the Tianhe-1A supercomputer[J]. Computers & Fluids, 2013, 80:244-250. [2] ANDERSON J D. 计算流体力学基础及其应用[M]. 吴颂平, 刘赵淼, 译. 北京:机械工业出版社, 2007. ANDERSON J D. Computational fluid dynamics[M]. WU S P, LIU Z M, translated. Beijing:China Machine Press, 2007(in Chinese). [3] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese). [4] 王松, 王海洋, 吴亚东, 等. 大规模CFD流场可视化分析系统的应用[J]. 航空动力学报, 2017, 32(5):1138-1147. WANG S, WANG H Y, WU Y D, et al. Application of large-scale CFD flowfield visualization analysis system[J]. Journal of Aerospace Power, 2017, 32(5):1138-1147(in Chinese). [5] 李思昆, 蔡勋,王文珂,等.大规模流场科学计算可视化[M]. 北京:国防工业出版社, 2013. LI S K, CAI X, WANG W K, et al. Visualization of scientific computation of large-scale flow fields[M]. Beijing:National Defense Industry Press, 2013. [6] 俞宏峰.大规模科学数据可视化[J].中国计算机学会通讯,2012,8(9):29-36. YU H F. Visualization for large scale scientific data[J]. China Computer Federation Communication, 2012, 8(9):29-36(in Chinese) [7] VisIt[EB/OL].[2021-03-10]. http://wci.llnl.gov/simulation/computer-codes/visit. [8] ParaView[EB/OL].[2021-03-10].http://www.paraview.org. [9] 陈莉, 竹岛由里子, 藤代一成, 等. 大规模数据场的并行可视化[J]. 浙江大学学报(理学版), 2001, 28(2):222-226. CHEN L, TAKESHIMA Y, FUJISHIRO I, et al. Parallel visualization for large-scale datasets[J]. Journal of Zhejiang University (Sciences Edition), 2001, 28(2):222-226(in Chinese). [10] CAO Y, MO Z Y, AI Z W, et al. An efficient and visually accurate multi-field visualization framework for high-resolution climate data[J]. Journal of Visualization, 2016, 19(3):447-460. [11] FANG W, DENG L, ZHAO D, et al. Acceleration of PDE-based FTLE calculations on Intel multi-core and many-core architectures[C]//20154th International Conference on Computer Science and Network Technology (ICCSNT). Piscataway:IEEE Press, 2015:178-183. [12] CHEN L, FUJISHIRO I. Optimizing parallel performance of streamline visualization for large distributed flow datasets[C]//2008 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2008:87-94. [13] MAXIMO A, RIBEIRO S, BENTES C, et al. Memory efficient GPU-based ray casting for unstructured volume rendering[C]//IEEE/EG International Symposium on Volume Graphics. Piscataway:IEEE Press, 2008:155-162. [14] CAMP D, GARTH C, CHILDS H, et al. Streamline integration using MPI-hybrid parallelism on a large multicore architecture[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11):1702-1713. [15] GUPTA S, GIRSHICK R, ARBELáEZ P, et al. Learning rich features from RGB-D images for object detection and segmentation[M]//Computer Vision-ECCV 2014. Berlin:Springer, 2014:345-360. [16] STRÖFER C A M, WU J L, XIAO H, et al. Data-driven, physics-based feature extraction from fluid flow fields[J]. Communications in Computational Physics, 2018, 25(3):625-650. [17] FRANZ K, ROSCHER R, MILIOTO A, et al. Ocean eddy identification and tracking using neural networks[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2018:6887-6890. [18] HOLDEN C, KEANE A. Visualization methodologies in aircraft design[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2004. [19] BRANDON J M, HALLISSY J B, BROWN P W, et al. In-flight flow visualization results of the F-106B with a vortex flap[C]//RTO AVT Symposium on Advanced Flow Management:Part A-Vortex Flows and High Angle of Attack for Military Vehicles, 2001. [20] KLEIN T, GUéNIAT F, PASTUR L, et al. A design study of direct-touch interaction for exploratory 3D scientific visualization[J]. Computer Graphics Forum, 2012, 31(3pt3):1225-1234. [21] TONG X, EDWARDS J, CHEN C M, et al. View-dependent streamline deformation and exploration[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7):1788-1801. [22] GU Y, WANG C L. TransGraph:Hierarchical exploration of transition relationships in time-varying volumetric data[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12):2015-2024. [23] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11):2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383(in Chinese). [24] DENG L, WANG Y Q, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1):65-78. [25] WANG Y Q, DENG L, YANG Z G, et al. A rapid vortex identification method using fully convolutional segmentation network[J]. The Visual Computer, 2021, 37(2):261-273. [26] DENG L, WANG Y Q, CHEN C, et al. A clustering-based approach to vortex extraction[J]. Journal of Visualization, 2020, 23(3):459-474. [27] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-20]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-20].https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). |