ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (7): 625263-625263.doi: 10.7527/S1000-6893.2021.25263
• Special Topic of Advanced Manufacturing Technology and Equipment • Previous Articles Next Articles
WANG Maosong, DU Yulei
Received:
2021-01-14
Revised:
2021-02-02
Published:
2021-03-18
Supported by:
CLC Number:
WANG Maosong, DU Yulei. Research progress of additive manufacturing of TiAl alloys[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 625263-625263.
[1] 张永刚, 陈昌麒. 钛铝金属间化合物基合金中的孪生与孪生交互作用[J]. 航空学报, 2000, 21(增刊1):51-55. ZHANG Y G, CHEN C Q. Twinning and twin interactionsin γ-TiAl base alloys[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(Sup1):51-55(in Chinese). [2] WU X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10-11):1114-1122. [3] 荣科. 高温合金涡轮叶片材料的现状与发展[J]. 航空学报, 1985, 6(3):201-207. YUNG K. State-of-art and prospects of casting turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 1985, 6(3):201-207(in Chinese). [4] XI X X, DING W F, WU Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels[J]. Chinese Journal of Aeronautics, 2021, 34(6):100-109. [5] JANSCHEK P. Wrought TiAl blades[J]. Materials Today:Proceedings, 2015, 2(Sup1):92-97. [6] CHEN W, LI Z Q. Additive manufacturing of titanium aluminides[M]//Additive Manufacturing for the Aerospace Industry. Amsterdam:Elsevier, 2019:235-263. [7] 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147. YANG R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2):129-147(in Chinese). [8] DOWLING W E JR, DONLON W T JR. The effect of surface film formation from thermal exposure on the ductility of Ti-48Al-1V-0.2C (at%)[J]. Scripta Metallurgica et Materialia, 1992, 27(11):1663-1668. [9] BEWLAY B P, WEIMER M, KELLY T, et al. The science, technology, and implementation of TiAl alloys in co mmercial aircraft engines[J]. MRS Online Proceedings Library, 2013, 1516:49-58. [10] CHEN G, PENG Y B, ZHENG G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8):876-881. [11] XIN J J, ZHANG L Q, GE G W, et al. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of Niobium using constitutive equation and power dissipation map[J]. Materials & Design, 2016, 107:406-415. [12] TETSUI T, SHINDO K, KOBAYASHI S, et al. Strengthening a high-strength TiAl alloy by hot-forging[J]. Intermetallics, 2003, 11(4):299-306. [13] YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4):826-836. [14] AI T T. Microstructure and mechanical properties of in situ synthesized Al2O3/TiAl composites[J]. Chinese Journal of Aeronautics, 2008, 21(6):559-564. [15] TANG S Q, FENG C, SHEN J. Enhanced oxidation resistance of TiAlNbCr processed by isothermal forging[J]. Journal of Alloys and Compounds, 2020, 813:152174. [16] QIAO H C, ZHAO J B, GAO Y. Experimental investigation of laser peening on TiAl alloy microstructure and properties[J]. Chinese Journal of Aeronautics, 2015, 28(2):609-616. [17] BARBOSA J, RIBEIRO C S, MONTEIRO A C. Influence of superheating on casting of γ-TiAl[J]. Intermetallics, 2007, 15(7):945-955. [18] WANG D J, ZHAO H G, ZHENG W. Effect of temperature-related factors on densification, microstructure and mechanical properties of powder metallurgy TiAl-based alloys[J]. Advanced Powder Technology, 2019, 30(11):2555-2563. [19] XU W C, JIN X Z, HUANG K, et al. Improvement of microstructure, mechanical properties and hot workability of a TiAl-Nb-Mo alloy through hot extrusion[J]. Materials Science and Engineering:A, 2017, 705:200-209. [20] 孙瑞杰, 闫晓军, 聂景旭. 定向凝固涡轮叶片高温低周疲劳的破坏特点[J]. 航空学报, 2011, 32(2):337-343. SUN R J, YAN X J, NIE J X. Failure characteristics of directional solidification turbine blade under high temperature low cycle fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):337-343(in Chinese). [21] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese). [22] 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1):46-51. DING Y, CHANG H P. Analysis of turbine blade cooling effectiveness[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):46-51(in Chinese). [23] 周君辉, 张靖周. 气膜孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响[J]. 航空学报, 2016, 37(9):2729-2738. ZHOU J H, ZHANG J Z. Effects of partial blockage inside film holes on overall cooling effectiveness of an integrated impingement-fin-film cooling configuration on blade pressure side[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2729-2738(in Chinese). [24] 游良平, 陶毓伽, 蔡军, 等. 涡轮叶片前缘复合冷却实验[J]. 航空学报, 2009, 30(9):1618-1623. YOU L P, TAO Y J, CAI J, et al. Experiment of composite cooling on leading edge of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1618-1623(in Chinese). [25] 曹志廷, 郭文, 潘炳华, 等. 涡轮叶片冷却设计优化方法研究[J]. 燃气涡轮试验与研究, 2012, 25(4):30-36. CAO Z T, GUO W, PAN B H, et al. Optimization of turbine blade cooling design with iSIGHT[J]. Gas Turbine Experiment and Research, 2012, 25(4):30-36(in Chinese). [26] 鲁中良, 周江平, 杨东升, 等. 基于3D打印技术的预研涡轮叶片精铸蜡型快速制造方法[J]. 航空学报, 2015, 36(2):651-660. LU Z L, ZHOU J P, YANG D S, et al. Rapid fabricationmethod of pre-research turbine blade wax precision mould based on 3D printing technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):651-660(in Chinese). [27] GUANG M, BIN J, HAN H, et al. Design and simulation of an innovative cylinder fabricated by selective laser melting[J]. Chinese Journal of Aeronautics, 2019, 32(1):133-142. [28] SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020, 33(4):1252-1259. [29] ZHENG L J, LIU Y Y, SUN S B, et al. Selective laser melting of Al-8.5Fe-1.3V-1.7Si alloy:Investigation on the resultant microstructure and hardness[J]. Chinese Journal of Aeronautics, 2015, 28(2):564-569. [30] ZHOU Y H, LI W P, WANG D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic:Excellent combination of strength and ductility, and unique microstructural features associated[J]. Acta Materialia, 2019, 173:117-129. [31] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [32] 张琛, 杨森, 颜银标. TiAl基合金成形技术的研究现状[J]. 兵器材料科学与工程, 2017, 40(4):126-132. ZHANG C, YANG S, YAN Y B. Research progress in manufacturing of TiAl alloys[J]. Ordnance Material Science and Engineering, 2017, 40(4):126-132(in Chinese). [33] 王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机, 2020, 50(4):1-12, 136. WANG L, SHEN C, ZHANG C, et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology[J]. Electric Welding Machine, 2020, 50(4):1-12, 136(in Chinese). [34] 汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3):225-235. TANG H P, WANG J, LU S L, et al. Research progressin selective electron beam melting[J]. Materials China, 2015, 34(3):225-235(in Chinese). [35] 阚文斌, 林均品. 增材制造技术制备钛铝合金的研究进展[J]. 中国材料进展, 2015, 34(2):111-119, 135. KAN W B, LIN J P. Research progress on fabrication of TiAl alloys fabricated by additive manufacturing[J]. Materials China, 2015, 34(2):111-119, 135(in Chinese). [36] ANWAR S, AHMED N, PERVAIZ S, et al. On the turning of electron beam melted gamma-TiAl with coated and uncoated tools:A machinability analysis[J]. Journal of Materials Processing Technology, 2020, 282:116664. [37] MOHA MMAD A, ALAHMARI A, MOIDUDDIN K, et al. Porous γ-TiAl structures fabricated by electron beam melting process[J]. Metals, 2016, 6(1):25. [38] KARADGE M, GOUMA P I. Metastable phase formation during α2(D019) to γ (L10) transformation in as-atomized γ-TiAl alloy powders[J]. Applied Physics Letters, 2004, 85(21):4914-4916. [39] SCHUSTER J C, PALM M. Reassessment of the binary aluminum-titanium phase diagram[J]. Journal of Phase Equilibria and Diffusion, 2006, 27(3):255-277. [40] PRIARONE P C, RIZZUTI S, ROTELLA G, et al. Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(1-4):25-33. [41] SAN JUAN J, SIMAS P, SCHMOELZER T, et al. Atomic relaxation processes in an intermetallic Ti-43Al-4Nb-1Mo-0.1B alloy studied by mechanical spectroscopy[J]. Acta Materialia, 2014, 65:338-350. [42] GUPTA R K, PANT B, SINHA P P. Theory and practice of γ +α2 Ti aluminide:A review[J]. Transactions of the Indian Institute of Metals, 2014, 67(2):143-165. [43] NARAYANA P L, LI C L, KIM S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800℃[J]. Materials Science and Engineering:A, 2019, 756:41-45. [44] CHEN G L, SUN Z, XING Z. Oxidation and mechanical behavior of intermetallic alloys in the Ti-Nb-Al ternary system[J]. Materials Science & Engineering A, 1992, 153(1-2):597-601. [45] LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136:90-104. [46] VALKOV S, NEOV D, LUYTOV D, et al. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment[J]. Journal of Physics:Conference Series, 2016, 700:012034. [47] MA C L, GU D D, DAI D H, et al. Microstructure evolution and high-temperature oxidation behaviour of selective laser melted TiC/TiAl composites[J]. Surface and Coatings Technology, 2019, 375:534-543. [48] LÖBER L, SCHIMANSKY F P, KÜHN U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014, 214(9):1852-1860. [49] GREER C, NYCZ A, NOAKES M, et al. Introduction to the design rules for metal big area additive manufacturing[J]. Additive Manufacturing, 2019, 27:159-166. [50] FULLENWIDER B, KIANI P, SCHOENUNG J M, et al. Two-stage ball milling of recycled machining chips to create an alternative feedstock powder for metal additive manufacturing[J]. Powder Technology, 2019, 342:562-571. [51] 高学绪, 李纪恒, 朱洁, 等. 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10):1267-1271. GAO X X, LI J H, ZHU J, et al. Microstructure and magnetostriction of Fe-Ga powders prepared by gas atomization[J]. Acta Metallurgica Sinica, 2009, 45(10):1267-1271(in Chinese). [52] 刘文胜, 彭芬, 马运柱, 等. 工艺条件对气雾化制备SnAgCu合金粉末特性的影响[J]. 中国有色金属学报, 2009, 19(6):1074-1079. LIU W S, PENG F, MA Y Z, et al. Effect of procedure conditions on characteristics of SnAgCu alloyed powder prepared by gas atomization[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(6):1074-1079(in Chinese). [53] ENGEL B, BOURELL D L. Titanium alloy powder preparation for selective laser sintering[J]. Rapid Prototyping Journal, 2000, 6(2):97-106. [54] LIU B L, WANG M S, DU Y L, et al. Size-dependent structural properties of a high-Nb TiAl alloy powder[J]. Materials, 2020, 13(1):161-167. [55] LI W, LIU J, ZHOU Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Scripta Materialia, 2016, 118:13-18. [56] ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7):1727-1732. [57] XU J Q, ZHU J, FAN J K, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication[J]. Vacuum, 2019, 167:364-373. [58] ZHOU Y H, LIN S F, HOU Y H, et al. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting[J]. Applied Surface Science, 2018, 441:210-217. [59] WEISHEIT A, MORDIKE B L, SMARSLY W, et al. Laser surface remelting and laser surface gas alloying of an intermetallic TiAl alloy[J]. Lasers in Engineering, 2000, 10(1):63-81. [60] 李小雷, 周爱国, 汪长安,等. 自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理研究[J]. 硅酸盐学报, 2002, 30(3):407-410. LI X L, ZHOU A G, WANG C A, et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high temperature synthesis and study on mechanism of the reaction[J]. Journal of the Chinese Ceramic Society, 2002, 30(3):407-410(in Chinese). [61] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术, 2015, 58(11):38-42. TIAN Z J, GU D D, SHEN L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2015, 58(11):38-42(in Chinese). [62] AFKHAMI S, DABIRI M, ALAVI S H, et al. Fatigue characteristics of steels manufactured by selective laser melting[J]. International Journal of Fatigue, 2019, 122:72-83. [63] ZHANG H Y, DONG D K, SU S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V[J]. Chinese Journal of Aeronautics, 2019, 32(10):2383-2393. [64] LI W, LIU J, ZHOU Y, et al. Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process[J]. Intermetallics, 2017, 85:130-138. [65] RASTKAR A R, SHOKRI B. Surface transformation of Ti-45Al-2Nb-2Mn-1B titanium aluminide by electron beam melting[J]. Surface and Coatings Technology, 2010, 204(11):1817-1822. [66] CAO S Z, XIAO S L, CHEN Y Y, et al. Phase transformations of the L12-Ti3Al phase in γ-TiAl alloy[J]. Materials & Design, 2017, 121:61-68. [67] GUSSONE J, GARCES G, HAUBRICH J, et al. Microstructure stability of γ-TiAl produced by selective laser melting[J]. Scripta Materialia, 2017, 130:110-113. [68] GUO Y L, JIA L N, KONG B, et al. Single track and single layer formation in selective laser melting of niobium solid solution alloy[J]. Chinese Journal of Aeronautics, 2018, 31(4):860-866. [69] VRANCKEN B, CAIN V, KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87:29-32. [70] GUSSONE J, HAGEDORN Y C, GHEREKHLOO H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures[J]. Intermetallics, 2015, 66:133-140. [71] SHI X Z, WANG H X, FENG W W, et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2020, 91:105247. [72] 杨益, 党明珠, 李伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报, 2020, 56(3):181-188. YANG Y, DANG M Z, LI W, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(3):181-188(in Chinese). [73] GAO P, WANG Z M, ZENG X Y. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4):355-361. [74] GAO P, HUANG W P, YANG H H, et al. Cracking behavior and control of-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. Journal of Materials Science & Technology, 2020, 39:144-154. [75] SHI X Z, MA S Y, LIU C M, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics & Laser Technology, 2017, 90:71-79. [76] SHANG C, XU G J, WANG C Y, et al. Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer[J]. Materials Letters, 2019, 252:342-344. [77] RITTINGHAUS S K, WILMS M B. Oxide dispersion strengthening of γ-TiAl by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2019, 804:457-460. [78] 刘占起, 徐国建, 马瑞鑫, 等. 激光同轴送粉增材制造TiAl合金的性能[J]. 中国激光, 2019, 46(3):146-152. LIU Z Q, XU G J, MA R X, et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding[J]. Chinese Journal of Lasers, 2019, 46(3):146-152(in Chinese). [79] SHARMAN A R C, HUGHES J I, RIDGWAY K. Characterisation of titanium aluminide components manufactured by laser metal deposition[J]. Intermetallics, 2018, 93:89-92. [80] ABDULRAHMAN K O, AKINLABI E T, MAHAMOOD R M, et al. Laser metal deposition of titanium aluminide composites:A review[J]. Materials Today:Proceedings, 2018, 5(9):19738-19746. [81] HE W W, JIA W P, LIU H Y, et al. Research on preheating of titanium alloy powder in electron beam melting technology[J]. Rare Metal Materials and Engineering, 2011, 40(12):2072-2075. [82] KLOCKE F, HERRIG T, ZEIS M, et al. Comparison of the electrochemical machinability of electron beam melted and casted gamma titanium aluminide TNB-V5[J]. Journal of Engineering Manufacture, 2018, 232(4):586-592. [83] SCHWERDTFEGER J, SINGER R F, KÖRNER C. In situ flaw detection by IR-imaging during electron beam melting[J]. Rapid Prototyping Journal, 2012, 18(4):259-263. [84] KLASSEN A, FORSTER V E, JUECHTER V, et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl[J]. Journal of Materials Processing Technology, 2017, 247:280-288. [85] TERNER M, BIAMINO S, EPICOCO P, et al. Electron beam melting of high niobium containing TiAl alloy:Feasibility investigation[J]. Steel Research International, 2012, 83(10):943-949. [86] ANWAR S, AHMED N, ABDO B M, et al. Electron beam melting of gamma titanium aluminide and investigating the effect of EBM layer orientation on milling performance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3093-3107. [87] LEE S, KIM J, CHOE J, et al. Understanding crack formation mechanisms of Ti-48Al-2Cr-2Nb single tracks during laser powder bed fusion[J]. Metals and Materials International, 2021, 27(1):78-91. [88] POLOZOV I, KANTYUKOV A, GONCHAROV I, et al. Additive manufacturing of Ti-48Al-2Cr-2Nb alloy using gas atomized and mechanically alloyed plasma spheroidized powders[J]. Materials, 2020, 13:3592-3408. [89] KAN W, CHEN B, PENG H, et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 2019, 809:151673. [90] STARK A, BARTELS A, CLEMENS H, et al. On the formation of ordered ω-phase in high Nb containing γ-TiAl based alloys[J]. Advanced Engineering Materials, 2010, 10(10):929-934. [91] JUECHTER V, SCHAROWSKY T, SINGER R F, et al. Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting[J]. Acta Materialia, 2014, 76:252-258. [92] 周俊, 周斌, 李宏新, 等. 电子束选区熔化线能量密度对钛铝合金粉末中铝元素挥发的影响[J]. 电加工与模具, 2018(4):52-56. ZHOU J, ZHOU B, LI H X, et al. Influence of line energy density of electron beam selective melting on volatilization of aluminum in TiAl alloy powders[J].Electromachining & Mould, 2018(4):52-56(in Chinese). [93] ZHOU J, LI H X, YU Y F, et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan[J]. Intermetallics, 2019, 113:106575. [94] SEIKH A H, MOHA MMAD A, SHERIF E S M, et al. Corrosion behavior in 3.5% NaCl solutions of γ-TiAl processed by electron beam melting process[J]. Metals, 2015, 5(4):2289-2302. [95] CORMIER D, HARRYSSON O, MAHALE T, et al. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders[J]. Research Letters in Materials Science, 2007, 10:737-741. [96] FILIPPINI M, BERETTA S, PATRIARCA L, et al. Defect tolerance of a gamma titanium aluminide alloy[J]. Procedia Engineering, 2011, 10:3677-3682. [97] SCHWERDTFEGER J, KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr:Microstructure and aluminium loss[J]. Intermetallics, 2014, 49:29-35. [98] MURR L E, GAYTAN S M, CEYLAN A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5):1887-1894. [99] WONG H, GARRARD R, BLACK K, et al. Material characterisation using electronic imaging for Electron Beam Melting process monitoring[J]. Manufacturing Letters, 2020, 23:44-48. [100] MOHA MMAD A, AL-AHMARI M A, ALFAIFY A, et al. Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy[J]. Rapid Prototyping Journal, 2017, 23(3):474-485. [101] LI W, LIU J, WEN S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113:125-133. [102] YANG Y, WEN S F, WEI Q S, et al. Effect of scan line spacing on texture, phase and nanohardness of TiAl/TiB2 metal matrix composites fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 728:803-814. [103] ZHANG X Y, LI C W, ZHENG M Y, et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition[J]. Additive Manufacturing, 2020, 32:101087. [104] YUE H Y, CHEN Y Y, WANG X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 750:617-625. [105] LI W, LI M, YANG Y, et al. Enhanced compressive strength and tailored microstructure of selective laser melted Ti-46.5Al-2.5Cr-2Nb-0.5Y alloy with different boron addition[J]. Materials Science and Engineering:A, 2018, 731:209-219. [106] LI W, LI M, LIU J, et al. Microstructure control and compressive properties of selective laser melted Ti-43.5Al-6.5Nb-2Cr-0.5B alloy:Influence of reduced graphene oxide (RGO) reinforcement[J]. Materials Science and Engineering:A, 2019, 743:217-222. [107] LI M, WU X, YANG Y, et al. TiAl/RGO (reduced graphene oxide) bulk composites with refined microstructure and enhanced nanohardness fabricated by selective laser melting (SLM)[J]. Materials Characterization, 2018, 143:197-205. [108] ISMAEEL A, WANG C S. Effect of Nb additions on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(5):1007-1016. [109] WANG J W, LUO Q, WANG H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique[J]. Additive Manufacturing, 2020, 32:101007. [110] NAGA SRUTHI N, BANUMATHY S, NAGESWARA RAO G V S, et al. Solidification behavior of γ-aluminide Ti-46.5Al-xNb-yCr-zMo-0.3B alloys[J]. Vacuum, 2019, 163:352-359. [111] ABDULRAHMAN K O, AKINLABI E T, MAHAMOOD R M. Characteristics of laser metal deposited titanium aluminide[J]. Materials Research Express, 2019, 6:046504. [112] WU Y, ZHANG S Q, CHENG X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process[J]. Journal of Alloys and Compounds, 2019, 799:325-333. [113] DILIP J J S, MIYANAJI H, LASSELL A, et al. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing[J]. Defence Technology, 2017, 13(2):72-76. [114] ZHANG J S, WU Y, CHENG X, et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique[J]. Materials Letters, 2019, 243:62-65. [115] RITTINGHAUS S K, MOLINA RAMIREZ V R, ZIELINSKI J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl[J]. Journal of Laser Applications, 2019, 31(4):042005. [116] RITTINGHAUS S K, HECHT U, WERNER V, et al. Heat treatment of laser metal deposited TiAl TNM alloy[J]. Intermetallics, 2018, 95:94-101. [117] SẂADZBA R, MARUGI K, PYCLIK Ł. STEM investigations of γ-TiAl produced by additive manufacturing after isothermal oxidation[J]. Corrosion Science, 2020, 169:108617. [118] KAN W, CHEN B, JIN C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting[J]. Materials & Design, 2018, 160:611-623. [119] CAPRIO L, DEMIR A G, CHIARI G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system[J]. Journal of Physics Photonics, 2020, 2:024001. [120] CHEN Y Y, YUE H Y, WANG X P, et al. Selective electron beam melting of TiAl alloy:Microstructure evolution, phase transformation and microhardness[J]. Materials Characterization, 2018, 142:584-592. [121] BASILE G, BAUDANA G, MARCHESE G, et al. Characterization of an additive manufactured TiAl alloy-steel joint produced by electron beam welding[J]. Procedia CIRP, 2018, 11:149-157. [122] GUO C, GE W J, LIN F. Dual-material electron beam selective melting:Hardware development and validation studies[J]. Engineering, 2015, 1(1):124-130. [123] WARTBICHLER R, CLEMENS H, MAYER S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy[J]. Advanced Engineer Materials, 2019, 21:1900800. [124] PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2012, 212(12):2619-2628. [125] YASA E, DECKERS J, KRUTH J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5):312-327. [126] YANG G Y, JIA W P, ZHAO P, et al. Microstructures of as-fabricated and post heat treated Ti-47Al-2Nb-2Cr alloy produced by selective electron beam melting (SEBM)[J]. Rare Metal Materials and Engineering, 2016, 45(7):1683-1686. [127] TODAI M, NAKANO T, LIU T Q, et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing, 2017, 13:61-70. [128] KAN W, CHEN B, PENG H, et al. Fabrication of nano-TiC reinforced high Nb-TiAl nanocomposites by electron beam melting[J]. Materials Letters, 2020, 259:126856. [129] KAN W B, LIANG Y F, PENG H, et al. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(12):2596-2601. [130] YOUN S J, KIM Y K, KIM S W, et al. Elevated temperature compressive deformation behaviors of γ-TiAl-based Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Intermetallics, 2020, 124:106859. [131] KIM Y K, HONG J K, LEE K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment[J]. Intermetallics, 2020, 121:106771. [132] PRADEEP G V K, DURAISELVAM M, PRASAD K S, et al. Tribological behavior of additivemanufactured γ-TiAl by electron beam melting[J]. Transactions of the Indian Institute of Metals, 2020, 73(6):1661-1667. [133] IÇÖZ C, PATRIARCA L, FILIPPINI M, et al. Strain accumulation in TiAl intermetallics via high-resolution digital image correlation (DIC)[J]. Procedia Engineering, 2014, 74:443-448. [134] CHEN Y Y, YUE H Y, WANG X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering:A, 2018, 713:195-205. [135] BIAMINO S, PENNA A, ACKELID U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy:Microstructure and mechanical properties investigation[J]. Intermetallics, 2011, 19(6):776-781. [136] LIN B C, CHEN W, YANG Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830:154684. [137] SEIFI M, SALEM A A, SATKO D P, et al. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb[J]. Journal of Alloys and Compounds, 2017, 729:1118-1135. [138] BAUDANA G, BIAMINO S, KLÖDEN B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si:Feasibility investigation[J]. Intermetallics, 2016, 73:43-49. [139] FRANZÉN S F, KARLSSON J, DEHOFF R, et al. Microstructural properties of gamma titanium aluminide manufactured by electron beam melting[M]//Supplemental Proceedings. Hoboken:John Wiley & Sons, Inc., 2011:455-462. [140] SANKAR G S, KARTHIK G M, MOHA MMAD A, et al. Friction welding of electron beam melted-TiAl alloy Ti-48Al-2Cr-2Nb[J]. Transactions of the Indian Institute of Metals, 2019, 72(1):35-46. [141] GE W J, GUO C, LIN F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting[J]. Procedia Engineering, 2014, 81:1192-1197. [142] BAUDANA G, BIAMINO S, UGUES D, et al. Titanium aluminides for aerospace and automotive applications processed by electron beam melting:Contribution of Politecnico di Torino[J]. Metal Powder Report, 2016, 71(3):193-199. [143] KIM Y K, YOUN S J, KIM S W, et al. High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Materials Science and Engineering:A, 2019, 763:138138. [144] THOMAS M, MALOT T, AUBRY P, et al. The prospects for additive manufacturing of bulk TiAl alloy[J]. Materials at High Temperatures, 2016, 33(4-5):571-577. [145] KENEL C, DASARGYRI G, BAUER T, et al. Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures[J]. Materials & Design, 2017, 134:81-90. [146] TEBALDO V, FAGA M G. Influence of the heat treatment on the microstructure and machinability of titanium aluminides produced by electron beam melting[J]. Journal of Materials Processing Technology, 2017, 244:289-303. [147] CHO K, KOBAYASHI R, OH J Y, et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting[J]. Intermetallics, 2018, 95:1-10. [148] KONDO D, YASUDA H, NAKANO T, et al. The effect of hip treatment on the mechanical properties of titanium aluminide additive manufactured by EBM[J]. Materials Research Proceedings, 2019, 10:114-120. |
[1] | Youkui LAI, Haiteng MA, Yisu LIU, Hua OUYANG. Flow measurement and analysis of a turbine blade with multiple cooling structures based on magnetic resonance velocimetry [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 627920-627920. |
[2] | FAN Yongsheng, YANG Xiaoguang, SHI Duoqi, TAN Long, HUANG Weiqing. Rafting-waste judgement of serviced turbine blades: quantitative characterization and threshold determination [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625100-625100. |
[3] | YANG Jiankai, GU Dongdong, GE Qing, TAN Chenchen, WEN Yu. Support layout and precise forming mechanism of aluminum alloy for laser additive manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525331-525331. |
[4] | LI Dichen, LU Zhongliang, TIAN Xiaoyong, ZHANG Hang, YANG Chuncheng, CAO Yi, MIAO Kai. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525387-525387. |
[5] | QU Ruizhi, HUANG Liangpei, XIAO Dongming. Numerical simulation of melt pool evolution and metal spattering characterization during selective laser melting processing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525240-525240. |
[6] | JIA Yuchao, CHI Guanxin, ZHANG Kun, ZHANG Jia, WANG Zhenlong. High-efficiency electrical arc machining of integral shrouded blisk using grouped electrode [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525605-525605. |
[7] | ZHANG Peiyu, ZHOU Xin, LI Yinghong. Progress on high energy beam repair of single crystal turbine blades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525610-525610. |
[8] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
[9] | YE Lin, LIU Cunliang, ZHU Andong, ZHOU Tianliang. Influence of compact-ribbed passage on trailing-edge cutback film cooling performance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 125174-125174. |
[10] | LEI Shiying, SUN Jianzhong, LIU He. Cumulative damage index model and service reliability evaluation of turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225064-225064. |
[11] | HU Shengpeng, LI Wenqiang, FU Wei, SONG Xiaoguo, LONG Weimin, CAO Jian. Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536 superalloy brazed using amorphous BNi-2 filler [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 423846-423846. |
[12] | CAO Longchao, ZHOU Qi, HAN Yuanfei, SONG Bo, NIE Zhenguo, XIONG Yi, XIA Liang. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524790-524790. |
[13] | GU Dongdong, ZHANG Han, LIU Gang, YANG Biqi. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524868-524868. |
[14] | HU Xiaoan, SHI Duoqi, YANG Xiaoguang, YU Huichen. TMF constitutive and life modeling: From smooth specimen to turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 422494-422494. |
[15] | CHEN Dawei, ZHU Huiren, LI Huatai, LIU Haiyong, ZHOU Daoen. Effect of unsteady wake on full coverage film cooling effectiveness for a turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 122651-122651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341