[1] 刘凯, 叶赋晨. 垂直起降飞行器的发展动态和趋势分析[J]. 航空工程进展, 2015, 6(2):127-138, 159. LIU K, YE F C. Review and analysis of recent developments for VTOL vehicles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2):127-138, 159(in Chinese). [2] 张啸迟, 万志强, 章异嬴, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1):179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):179-192(in Chinese). [3] KOHLMAN D L. Introduction to V/STOL airplanes[M]. Ames:Iowa State University Press, 1981. [4] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway:IEEE, 2018:1-21. [5] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3):624037. HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624037(in Chinese). [6] NALIANDA D, SINGH R. Turbo-electric distributed propulsion-Opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):543-549. [7] ZHANG Y, ZHOU Z, WANG K L, et al. Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers[J]. Applied Sciences, 2020, 10(5):1706. [8] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese). [9] KIM H, LIOU M S. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674. [10] LIOU M F, KIM H, LEE B J, et al. Aerodynamic design of integrated propulsion-airframe configuration of the hybrid wingbody aircraft:AIAA-2017-3411[R]. Reston:AIAA, 2017. [11] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3):883-894. [12] LUNDBLADH A. Distributed propulsion and turbo-fan scale effects[C]//17th Symposium on Airbreathing Engine, 2005. [13] WICK A T, HOOKER J R, ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion:AIAA-2015-1500[R]. Reston:AIAA, 2015. [14] PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6):2414-2426. [15] KERHO M F. Aero-propulsive coupling of an embedded, distributed propulsion system:AIAA-2015-3162[R]. Reston:AIAA, 2015. [16] MARCOS J, MARSHALL D. Computational and experimental comparison of a powered lift, upper surface blowing configuration:AIAA-2010-0502[R]. Reston:AIAA, 2010. [17] MAITA M, TORISAKI T, MATSUKI M. Effect of side fences on powered-lift augmentation for USB configurations[J]. Journal of Aircraft, 1982, 19(5):364-367. [18] 焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2):20-24. JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2):20-24(in Chinese). [19] 龚志斌, 李杰, 蒋胜矩, 等. 大型运输机动力增升喷流效应数值模拟[J]. 航空动力学报, 2016, 31(8):1811-1819. GONG Z B, LI J, JIANG S J, et al. Numerical simulation of powered high-lift jet effects for large transport[J]. Journal of Aerospace Power, 2016, 31(8):1811-1819(in Chinese). [20] 白俊强, 张晓亮, 刘南, 等. 考虑动力影响的大型运输机增升构型气动特性研究[J]. 空气动力学学报, 2014, 32(4):499-505. BAI J Q, ZHANG X L, LIU N, et al. The research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet[J]. Acta Aerodynamica Sinica, 2014, 32(4):499-505(in Chinese). [21] LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4):1539-1551. [22] ENGLAR R, BLAYLOCK G, GAETA R, et al. Recent experimental development of circulation control airfoils and pneumatic powered-lift systems:AIAA-2010-0345[R]. Reston:AIAA, 2010. [23] PFINGSTEN K C, RADESPIEL R. Experimental and numerical investigation of a circulation control airfoil:AIAA-2009-0533[R]. Reston:AIAA, 2009. [24] DUMAKUDE N, KAMPER M J. Validation of BEM using CFD MRF coupled with axial and radial induction factors:AIAA-2017-3484[R]. Reston:AIAA, 2017. [25] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese). [26] RAJAGOPALAN R G, FANUCCI J B. Finite difference model for vertical axis wind turbines[J]. Journal of Propulsion and Power, 1985, 1(6):432-436. [27] ZORI L A J, RAJAGOPALAN R G. Navier-Stokes calculations of rotor-airframe interaction in forward flight[J]. Journal of the American Helicopter Society, 1995, 40(2):57-67. [28] CHAFFIN M S, BERRY J D. Navier-Stokes simulation of a rotor using a distributed pressure disk method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995. [29] O'BRIEN D, SMITH M. Analysis of rotor-fuselage interactions using various rotor models:AIAA-2005-0468[R]. Reston:AIAA, 2005. |