[1] ZHAO H D, LI Z P, ZHANG H S. Ultra-tight GPS/IMU integration based long-range rocket projectile navigation[J]. Journal of Measurement Science and Instrumentation, 2016, 66:64-70. [2] 赵捍东, 李志鹏, 王芳. 基于惯性/地磁的弹体组合测姿方法[J]. 探测与控制学报, 2016, 38(3):47-51,56. ZHAO H D, LI Z P, WANG F. Projectile attitude estimation based on inertial & magneto integrated measurement[J]. Journal of Detection & Control, 2016, 38(3):47-51,56(in Chinese). [3] 刘宗源, 高敏, 王毅, 等. 二维弹道修正引信滚转角专家系统PID控制算法[J]. 现代防御技术, 2019, 47(2):24-29. LIU Z Y, GAO M, WANG Y, et al. Expert system PID algorithm for roll angle of two-dimensional trajectory Correction fuze[J]. Modern Defence Technology, 2019, 47(2):24-29(in Chinese). [4] 杨宝清, 杨东晓, 朱远海. 迫击炮可动舵二维修正引信气动特性研究[J]. 兵器装备工程学报, 2020, 41(2):30-34. YANG B Q, YANG X D, ZHU H Y. Study on aerodynamic characteristics of two-dimensional modified fuze for movable rudder of mortar[J]. Journal of Ordnance Equipment Engineering,2020, 41(2):30-34(in Chinese). [5] 普承恩, 王良明, 傅健. 基于EKF落点预测的二维弹道修正弹制导方法[J]. 兵器装备工程学报, 2018, 39(6):52-57. PU C E, WANG L M, FU J. A guidance method for two-dimensional trajectory correction projectile based on impact point prediction pf EKF[J]. Journal of Ordnance Equipment Engineering, 2018, 39(6):52-57(in Chinese). [6] PAVKOVIC B, PAVIC M, CUK D. Frequency-modulated pulse-jet control of an artillery rocket[J]. Journal of Spacecraft and Rockets, 2012, 49(2):286-294. [7] ROGERS J, COSTELLO M. Design of a roll-stabilized mortar projectile with reciprocating canards[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1026-1034. [8] BURCHETT B, JITPRAPHAI T, COSTELLO M. A comparison of different guidance schemes for a direct fire rocket with a pulse jet control mechanism[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Restom:AIAA, 2001. [9] RATLIFF R, RAMSEY J, WISE K, et al. Advances in agile maneuvering for high performance munitions[C]//AIAA Guidance, Navigation, and Control Conference.Restom:AIAA, 2009. [10] ZHANG Y, GAO M, YANG S, et al. An adaptive proportional navigation guidance law for guided mortar projectiles[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(4):467-475. [11] FRESCONI F, CELMINS I, SILTON S, et al. High maneuverability projectile flight using low cost components[J]. Aerospace Science and Technology, 2015, 41:175-188. [12] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2):323421. YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323421(in Chinese). [13] GROSS M, COSTELLO M. Impact point model predictive control of a spin-stabilized projectile with instability protection[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(12):2215-2225. [14] WANG Y, SONG W, FANG D, et al. Guidance and control design for a class of spin-stabilized projectiles with a two-dimensional trajectory correction fuze[J]. International Journal of Aerospace Engineering, 2015, 2015:1-15. [15] GAGNON E, VACHON A. Efficiency analysis of canards-based course correction fuze for a 155-mm spin-stabilized projectile[J]. Journal of Aerospace Engineering, 2016, 29(6):04016055. [16] ZHANG X, YAO X, ZHENG Q. Impact point prediction guidance based on iterative process for dual-spin projectile with fixed canards[J]. Chinese Journal of Aeronautics, 2019, 32(8):1967-1981. [17] 赵捍东. 脉冲发动机提供控制力的火箭弹弹道修正理论及技术研究[D]. 南京:南京理工大学, 2008. ZHAO H D. The study of theory and technique for rocket trajectory correction by the control force of lateral push jet[D]. Nanjing:Nanjing University of Science & Technology, 2008(in Chinese). [18] 刘旭东. 旋转稳定弹二维弹道修正技术[D]. 北京:北京理工大学, 2016. LIU X D. Research on two-dimensional trajectory correction technology for spin-stabilized projectile[D]. Beijing:Beijing Institute of Technology, 2016(in Chinese). [19] ADLER F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5):500-507. [20] SōVE F, THEODOULIS S. Design of an H∞ gain-scheduled guidance scheme for a guided projectile[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(11):2399-2417. [21] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大出版社, 2008. HAN Z P. Exterior ballistics of projectile and rockets[M]. Beijing:Beijing Institute of Technology Press, 2008(in Chinese). [22] 王家祥, 杨新民, 王伟, 等. 基于制导炮弹的过重力补偿比例导引律优化设计[J]. 兵器装备工程学报, 2017, 38(7):67-70,88. WANG J X, YANG X M, WANG W, et al. Optimization design of proportional navigation guidance law with gravity over compensation based on guided projectile[J]. Journal of Ordnance Equipment Engineering, 2017, 38(7):67-70,88(in Chinese). [23] ZHANG Y, GAO M, YANG S, et al. An adaptive proportional navigation guidance law for guided mortar projectiles[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2016, 13(4):467-475. [24] 张华. 鸭式布局双旋稳定弹飞行控制方法研究[D]. 南京:南京理工大学, 2017. ZHANG H. Flight control for dual-spin stabilized projectile equipped with canards[D]. Nanjing:Nanjing University of Science & Technology, 2017(in Chinese). [25] 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2):724277. LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportion navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724277(In Chinese). [26] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359. [27] 叶年辉, 尤腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J/OL]. 航空学报, (2020-10-12)[2020-12-20].https://kns.cnki.net/kcms/detail/11.1929.v.20201011.1617.010.html. YE N H, LONG T, WU Y F, et al. Kriging assisted constrained differential evolution algorithm[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-10-12)[2020-12-20]. https://kns.cnki.net/kcms/detail/11.1929.v.20201011.1617.010.html (in Chinese). [28] LI N, MU A, YANG X, et al. A Novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach[J]. ISA Transactions, 2018, 76:197-215. [29] DATTA A, OCHOA J. Adaptive internal model control:design and stability analysis[J]. Automatica, 1996, 32(2):261-266. [30] QIU Z, SANTILLO M, JANKOVIC M, et al. Composite adaptive internal model control and its application to boost pressure control of a turbocharged gasoline engine[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6):2306-2315. [31] SZOLLOSI A, BARANYI P. Improved control performance of the 3-DoF aeroelastic wing section:A TP model based 2D parametric control performance optimization:improved control performance via 2 D parametric manipulation of TP models[J]. Asian Journal of Control, 2017, 19(2):450-466. |