ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2018, Vol. 39 ›› Issue (S1): 722190-722190.doi: 10.7527/S1000-6893.2018.22190
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
SHEN Zicai, LIU Yuming, TIAN Dongbo, DING Yigang, ZHAO Chunqing, XIA Yan
Received:
2018-03-01
Revised:
2018-04-16
Online:
2018-12-30
Published:
2018-04-16
Supported by:
CLC Number:
SHEN Zicai, LIU Yuming, TIAN Dongbo, DING Yigang, ZHAO Chunqing, XIA Yan. Standard system for ground simulation test of space environmental effect on space materials[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(S1): 722190-722190.
[1] 沈自才. 空间辐射环境工程[M]. 北京:宇航出版社, 2013:1-3. SHEN Z C. Space radiation environment engineering[M]. Beijing:China Astronautic Publishing House, 2013:1-3(in Chinese). [2] 沈自才, 丁义刚. 抗辐射设计与辐射效应[M]. 北京:中国科学技术出版社, 2015:13-15. SHEN Z C, DING Y G. Radiation resistance design and radiation effect[M]. Beijing:China Science and Technology Press, 2015:13-15(in Chinese). [3] 沈自才, 欧阳晓平, 高鸿, 等. 航天材料工程学[M]. 北京:国防工业出版社,2016:109-112. SHEN Z C, OUYANG X P, GAO H, et al. Aerospace material engineering[M]. Beijing:National Defense Industry Press, 2016:119-112(in Chinese). [4] 冯伟泉,丁义刚, 闫德葵, 等. 空间电子、质子和紫外综合辐照模拟试验研究[J]. 航天器环境工程, 2005, 22(2):69-72. FENG W Q, DING Y G, YAN D K, et al. Study on space electron, proton and ultraviolet combined irradiation simulation test[J]. Spacecraft Environment Engineering, 2005, 22(2):69-72(in Chinese). [5] 沈自才, 邱家稳, 丁义刚, 等.航天器空间多因素环境协同效应研究[J].中国空间科学技术, 2012, 32(5):54-60. SHEN Z C, QIU J W, DING Y G, et al. Space environment synergistic effect on spacecraft[J].Chinese Space Science and Technology, 2012, 32(5):54-60(in Chinese). [6] 邱家稳, 沈自才, 肖林.航天器空间环境协同效应研究[J]. 航天器工程, 2013, 22(1):15-20. QIU J W, SHEN Z C, XIAO L. Study on synergistic effect of space environments on spacecraft[J]. Spacecraft Engineering, 2013, 22(1):15-20(in Chinese). [7] European Cooperation for Space Standardization. Space product assurance-Thermal vacuum outgassing test for the screening of space materials:ECSS-Q-ST-70-02C[S]. Noordwijk:ESA Publications Division, 2008:1-45. [8] National Aeronautics and Space Administration. Outgassing test for nonmetallic materials associated with sensitive optical surfaces in a space environment:MSFC-SPEC-1443A[S]. Huntsville:Marshall Space Flight Center, 2003:1-11. [9] ASTM International. Standard test method for contamination outgassing characteristics of spacecraft materials:ASTM E 1559-09[S]. New York:ASTM International, 2009:1-11. [10] ASTM International. Standard test method for total mass loss and collected volatile condensable materials from outgassing in a vacuum environment:ASTM E 595-15[S]. New York:ASTM International, 2015:1-9. [11] 国防科学技术工业局. 真空中材料质量损失测试方法:QJ 1322A-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method for mass loss of materials in vacuum:QJ 1322A-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese). [12] 国防科学技术工业局. 航天器用非金属材料真空出气评价方法:QJ 20290-2014[S]. 北京:中国航天标准化研究所, 2014:1-10. National Defense Science and Technology Industry Bureau. Evaluating method of spacecraft nonmetal materials outgassing in vacuum:QJ 20290-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese). [13] 国防科学技术工业局. 真空条件下材料挥发性能测试方法:QJ 1558B-2016[S]. 北京:中国航天标准化研究所, 2016:1-10. National Defense Science and Technology Industry Bureau. Test method for materials outgassing performance in vacuum:QJ 1558B-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-10(in Chinese). [14] 中华人民共和国航空航天工业部. 真空-紫外辐照材料质量损失测试方法:QJ 1991-90[S]. 北京:中国航天标准化研究所, 1990:1-6. Ministry of Aeronautics and Astronautics of People's Republic of China. Test method for mass loss of materials irradiated by vacuum ultraviolet:QJ 1991-90[S]. Beijing:China Institute of Spaceflight Standardization, 1990:1-6(in Chinese). [15] European Cooperation for Space Standardization. Space product assurance-Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies:ECSS-Q-ST-70-04C[S]. Noordwijk:ESA Publications Division, 2008:1-25. [16] 国防科学技术工业委员会. 航天器热控涂层试验方法第8部分:热循环试验:GJB 2502.8-2006[S]. 北京:国防科工委军标出版发行部,2006:1-5. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 8:Thermal cycle test:GJB 2502.8-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-5(in Chinese). [17] European Cooperation for Space Standardization. Space product assurance-Flammability testing for the screening of space materials:ECSS-Q-ST-70-21C[S]. Noordwijk:ESA Publications Division, 2010:1-48. [18] International Organization for Standardization. Space systems-Space environment-Simulation guidelines for radiation exposure of non-metallic materials:ISO/DIS 15856:2010[S]. Geneva:International Organization for Standardization, 2010:1-32. [19] National Standards Committee of the Soviet Union. Polimeric materials,methods of radiation tests:GOST 25645.323[S]. Moscow:Standard Press, 1988:1-44. [20] National Standards Committee of Russia. Polymeric materials for space technique. Requirements for ultraviolet radiation stability tests:GOST R 25645.338[S]. Moscow:Standard Press, 1996:1-16 [21] 国防科学技术工业委员会. 航天器热控涂层试验方法第5部分:真空-紫外辐照试验:GJB 2502.5-2006[S]. 北京:国防科工委军标出版发行部,2006:1-6. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 5:Ultraviolet irradiation test in vacuum:GJB 2502.5-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-6(in Chinese). [22] 国防科学技术工业委员会. 航天器热控涂层试验方法第6部分:真空-质子辐照试验:GJB 2502.6-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 6:Proton irradiation test in vacuum:GJB 2502.6-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese). [23] 国防科学技术工业委员会. 航天器热控涂层试验方法第7部分:真空-电子辐照试验:GJB 2502.7-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 7:Electron irradiation test in vacuum:GJB 2502.7-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese). [24] 国防科学技术工业局. 空间用非金属材料太阳紫外辐射效应试验方法:QJ 20286-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method of solar ultraviolet radiation effect for space non-metallic materials:QJ 20286-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese). [25] 国防科学技术工业局. 空间用非金属材料电离辐射效应试验方法:QJ 20289A-2016[S]. 北京:中国航天标准化研究所, 2016:1-9. National Defense Science and Technology Industry Bureau. Test method for total ionizing radiation effect of spacecraft non-metal materials:QJ 20289A-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-9(in Chinese). [26] 国防科学技术工业局. 空间材料电子辐射效应试验方法:QJ 20627-2016[S]. 北京:中国航天标准化研究所, 2016:1-13. National Defense Science and Technology Industry Bureau. Test method of electron radiation effect for space materials:QJ 20627-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-13(in Chinese). [27] ASTM International. Standard practices for ground laboratory atomic oxygen interaction evaluation of materials for space applications:ASTM E2089-14[S]. New York:ASTM International, 2014:1-5. [28] MINTON T K. Protocol for atomic oxygen testing of materials in ground-based facilities:NASA CR-197332[R]. Washington, D.C.:NASA, 1994. [29] 国防科学技术工业委员会. 航天器热控涂层试验方法第9部分:原子氧试验:GJB 2502.9-2006[S]. 北京:国防科工委军标出版发行部,2006:1-6. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 9:Atomic oxygen test:GJB 2502.9-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-6(in Chinese). [30] 国家国防科学技术工业局. 空间材料原子氧效应试验方法:QJ 20285-2014[S]. 北京:中国航天标准化研究所, 2014:1-10. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen effect for spacecraft materials:QJ 20285-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-10(in Chinese). [31] International Organization for Standardization. Space systems-Space solar panels-Spacecraft charging induced electrostatic discharge test methods:ISO 11221:2011[S]. Geneva:International Organization for Standardization, 2011:1-50. [32] European Cooperation for Space Standardization. Space engineering-Spacecraft charging:Environment-induced effects on the electrostatic behaviour of space systems ECSS-E-ST-20-06C[S]. Noordwijk:ESA Publications Division, 2008:1-120. [33] National Aeronautics and Space Administration. Low earth orbit spacecraft charging design standard:NASA STD-4005[S]. Washington, D.C.:NASA, 2007. [34] National Aeronautics and Space Administration. Low earth orbit spacecraft charging design handbook:NASA-HDBK-4006[R]. Washington, D.C.:NASA, 2012. [35] CAROLYN K P, HENRY B G, WHITTLESEY A C, et al. Design guidelines for assessing and controlling spacecraft charging effects:NASA TP-2361[R]. Washington, D.C.:NASA, 1984. [36] National Aeronautics and Space Administration. Mitigating in-space charging effects-A guideline:NASA-HDBK-4002A[R]. Washington, D.C.:NASA, 2011. [37] International Organization for Standardization. Space systems-Space solar cells-Electron and proton irradiation test methods:ISO 23038:2018[S]. Geneva:International Organization for Standardization, 2018:1-10. [38] International Organization for Standardization. Test procedure to evaluate spacecraft material ejecta upon hypervelocity impact:ISO 11227:2012[S]. Geneva:International Organization for Standardization, 2012:1-23. [39] 国防科学技术工业局. 航天器空间碎片撞击风险评估程序:QJ 20134-2012[S]. 北京:中国航天标准化研究所,2012:1-24. National Defense Science and Technology Industry Bureau. Risk assessment procedures for spacecraft against space debris impact:QJ 20134-2012[S]. Beijing:China Institute of Spaceflight Standardization, 2012:1-24(in Chinese). [40] International Organization for Standardization. Space systems-Space environment simulation for material tests-General principles and criteria:ISO 17851:2016[S]. Geneva:International Organization for Standardization, 2016:1-24. [41] International Organization for Standardization. Space systems-Measurements of thermo-optical properties of thermal control materials:ISO 16378:2013[S]. Geneva:International Organization for Standardization, 2013:1-36. [42] ASTM International. Standard practice for combined, simulated space environment testing of thermal control materials with electromagnetic and particulate radiation:ASTM E512-94[S]. New York:ASTM International, 2015:1-9. [43] European Cooperation for Space Standardization. Space product assurance-Particle and UV radiation testing for space materials:ECSS-Q-ST-70-06C[S]. Noordwijk:ESA Publications Division, 2008:1-28. [44] 国防科学技术工业委员会. 航天器热控涂层试验方法第10部分:综合辐照试验:GJB 2502.10-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 10:Combined irradiation test:GJB 2502.10-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese). [45] 国防科学技术工业局. 空间材料综合辐射效应试验方法:QJ 20628-2016[S]. 北京:中国航天标准化研究所,2016:1-18. National Defense Science and Technology Industry Bureau. Test method of combined radiation effects for space materials:QJ 20628-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-12(in Chinese). [46] 国防科学技术工业局. 航天器热控材料粒子和紫外综合环境效应试验方法:QJ 20288A-2016[S]. 北京:中国航天标准化研究所, 2016:1-11. National Defense Science and Technology Industry Bureau. Test method for particle and ultraviolet radiation combined effects of spacecraft thermal control materials:QJ 20288A-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-11(in Chinese). [47] 国防科学技术工业局. 空间材料原子氧与紫外综合环境试验方法:QJ 20287-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and ultraviolet radiation synergistic effects for spacecraft materials:QJ 20287-2014[S]. Beijing:China Institute of spaceflight Standardization, 2014:1-12(in Chinese). [48] 国防科学技术工业局. 空间材料原子氧与热循环综合环境模拟试验方法:QJ 20629-2016[S]. 北京:中国航天标准化研究所, 2016:1-12. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and thermal cycling synergistic effect for spacecraft materials:QJ 20629-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-12(in Chinese). [49] 国防科学技术工业局. 空间材料原子氧与带电粒子综合环境模拟试验方法:QJ 20630-2016[S]. 北京:中国航天标准化研究所,2016:1-17. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and energetic particles synergistic effect for spacecraft materials:QJ 20630-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-17(in Chinese). |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Ruitong ZHANG, Lei WANG, Jiajia LIU, Jihong ZHU. Lightweight design of space trusses considering joint parameterization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529715-529715. |
[3] | Jidong SU, Weilin XU, Shenghua ZHAI, Wei WANG, Yating HE. Practice and prospect of space AD hoc network technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529912-529912. |
[4] | Sai ZHANG, Zhen YANG, Xiangnan DU, Yazhong LUO. Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328778-328778. |
[5] | Kai NING, Baolin WU. Event-triggered-based orbit maintenance control for spacecraft subsatellite point control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329412-329412. |
[6] | Kaixin CUI, Guangren DUAN. High⁃order fully actuated anti⁃disturbance control for a type of combined spacecraft based on disturbance observer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628892-628892. |
[7] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[8] | Dawei ZHANG, Guoping LIU. A high⁃order fully actuated predictive control approach of spacecraft flying⁃around under time⁃variant communication constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628633-628633. |
[9] | Leyan FANG, Han MENG, Mingzhe HOU. Iterative learning sliding mode control with precise parameter estimation and its application [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628889-628889. |
[10] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[11] | Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890. |
[12] | Ming LIU, Ruichao FAN, Shi QIU, Xibin CAO. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628313-628313. |
[13] | Yuanyuan TU, Dayi WANG, Xiangyan ZHANG, Jiaxing LI, Xiaofeng HUANG. Reconfigurability and autonomous reconfiguration methods of spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855-628855. |
[14] | Chuang XU, Baolin WU. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 327465-327465. |
[15] | LIU Peidong, JIAO Bohan, DANG Zhaohui. Design method of polygon formation for space-based gravitational-wave detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726907-726907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341